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A COMPLETE SET OF FUNCTIONS IN

MECHANICAL THREE-BODY em.%%r%%%zga

JULIA NYIRI* Budapuy

A noBm.:oao set of basis functions for the quanty,,, .

problem is chosen in the form of hyperspherical f,,,, ﬁcorm.:o
are characterized by quantum numbers ooﬁ,mwwo:;m% 1018, Thoegg functions
o> md.u.ﬁwv > 0(3). Equations are derived to obtain 4 g to mrm chain 0(6) >
explicit form. he basig functions in an

al three-body

I. INTRODUCTION

Elementary processes involving three intera;
extremely complicated structure. It is therefora :,::m
a complete understanding of systems consisting (¢ pop
H_roma‘ non-interacting states form a complete say of bagi
of which the wave functions of interacting particly ., %18 Vectors, in terms

In any classification of multiparticle states it |, i " be €Xpanded.

.arme. variables which are known to be constay, H.@ogmw; to diagonalize
Invariance principles; one usually takes the tolu] op Motion from general
mentum. In nuclear physics we deal with particly, omowm% and angular mo-
masses; evidently, it would be useful to have - °qual or nearly equal
multiparticle angular momentum states which ey, ethod for constructing
footing. W all partigjeg on an equal
The aim of the present paper is to find a
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o:._seonmcssm particles.
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mzzoﬁoﬁ. corresponding to three free particles. _vcwsgm set of orthonormal
perspherical functions, i.e. functions, which are deyj :&.M 80, We introduce hy-
sphere, and are eigenfunctions of the angular ._:s.edw the five-dimensional
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The group-theoretical features of the three-particle states which follow from
this invariance were studied by several authors [1—10]. The. classification of
the three-particle states based on these groups according to the chain O(6) o
> SU(3) > O(3) gives 4 quantum numbers, namely: K — the six-dimen-
sional momentum, corresponding to the eigenvalue of the six-dimensional Lapla-
cian;J — the angular momentum and its projection M, and a number », which
characterizes the permutation symmetry. On the other hand, the motion of asys-
tem of n particles in a given energy and momentumstate can be defined by 3n-4
parameters, and requires for its quantum-mechanical description 3n-4 quantum
numbers, i.e. five in the case of three particles. That means that the states
labelled according to the chain above might be degenerate; this degeneracy
can be eliminated either by the straightforward orthogonalization of the
functions, or with help of a hermitian operator , which we take from the
group O(6), and which commutes with the O(3) generators. The eigenvalue
of this operator is the fifth — missing — quantum number Q. Unfortunately,
since £ is a cubic operator, it leads to rather complicated eigenvalue equations.

II. GROUP-THEORETICAL PROPERTIES. CHOICE OF COORDINATES
AND PARAMETRIZATION

In the present paper we first make an attempt to calculate directly the
eigenfunctions corresponding to the given five quantum numbers K, J, M, »,
Q. If one intends to construct harmonic functions for the three-particle system
analogous to the spherical functions forming the basis in the case of two
particles, it is natural to use angular variables on the five-dimensional sphere,
and build up the wanted functions in terms of these coordinates. First of all,
it is essential to take the proper parametrization. We will consider particles
with equal masses. Let #; (i = 1, 2, 3) be the radius-vectors of the three parti-
cles, and fix them by the condition &; + 2 + #3 = 0. The Jacobi-coordinates
will be defined as - .

= —(3/2)V2F + Z2); 7 = (2)VEEL — Fa)
) £2 - m2 = o? = 2% + 23 + a2,

where ¢ is the radius of the 5-sphere. The permutations mix up the compo-

£

nents of £ and 7, and therefore it is useful to consider a 6-vector A .vu for which
; / .

a (o) =(-) .
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we have
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Thus the permutations appear as some rotations in the 6-dimensional mwmom“
0% = &% 4 92 can be considered as the invariant of O(6).
Further, we introduce the complex vectors

z =F+ip ‘

N*Hmlmm.

For them the permutation Symmetry properties are especially simple:
Pz =2*% Pgy—* et Pogy — ¥ gini
Pzt =2, Pgs*—g ef  Poga* — 5 e-ini

On these vectors one can bujld up the group SU(3), the condition &2 + 2=
= [2]2 = p2 gives its invariant.

In order to complete the parametrization, let us consider a triangle, the
.<Q.aomm of which are given by three particles. The situation of this triangle
in space w&: be determined by the unit vectors Ii, I which, together with -
=104 X [z, form the moving coordinate system. Their orientation towards:
wrm mxmm. system of coordinates is described by the Euler angles. The vectors -
i and > are connected with z in the following way:

Z = 2-U2%g g-iti/2) (e@2 J; + je-i@/2) Jy),

4

Hrm parameters 1 and o characterize the form of the triangle (except the
similarity transformations, which we can exclude putting ¢ = const.). Note:
that the parametrization is chosen in such a way that ,.

MSN&§ = NMM& = .NVMSS.AQH @ QMV :

and

Zm= 2 Dif3 s (1, a,0) DL, (91 © ¢2),

#=41

i.e. we can separate explicitely the rotations and the deformations of the
triangle. (I,, and %, are unit vectors corresponding to the moving and the
fixed coordinate systems, respectively.) ‘
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IIl. GENERATORS AND CASIMIR OPERATORS, EIGENFUNCTIONS

Now we can calculate the operators, the eigenvalues of which we are trying
to find. They are:

A = |A.l2,
the Laplace operator on the five-dimensional sphere; here
d . 0 _
A = iz — — iz, . are the SU(3) generators; ‘
ozx 0z; .
n\ H. k& KA H. \n m . m + . % m . %X m
=i ik — = 12i — — 12 — 1z, — 1 T,
w=1}{du ) MA ¢ 02k ¥ 024 b oz, k oz;

the generator of the three-dimensional rotation group; the scalar operator

2 _w m .mv hmm
H| Nl.llm Hll u
m[ wmna ammwf 2 T
. )

the eigenvalue of which is », and finally the operator

Q=3 Ju Budu,

©.k.l

where
2 o b7} 0

Bu=}(4 m.uw?li+nr|1§ — iz —
e = & (Aex + Ars) m/ &muu wmua i o rm&.

1s the generator of the group of deformations of the triangle.
The explicit expressions for these five commuting operators are the following.

Using

ds? = |dz|? = gusq'qt = @[} da® + } d22 + 1dQ? } 3d2 +
+ dQ — sin ¢ d21dQ2; — cos a dQsdA] + de?,

where dQ; are Emb?mmmgﬂ rotations about the moving axes, we obtain the
Laplacian:

A 1/2 9 ik g1/2 @
—_ 0 {7+ ———
g agi gt g agt
o o 1 %+ .%+H%+
=4 2ctg 20 — —— -+ cosa e
aar T2 T o 22805 4 A0




L1 Je @\, E:
. ; tsine |[——— 4 —n— |4 —
2cos2q | 0022 08100, 09,00, ] 002
7]
The explicit form of N is N = mmlx. If a harmonic function @ is an eigen-

function of A, it has to fulfl
- A0 = — K(K - 4) @
.and
NO = v,

(We remark here that if the harmonic function belongs to the SU(3) repre-
sentation (p, ¢), then K — P+q,v=%(p—q))
The operator Jy; is obtained in the form

%:n —_ |W ™ NA_:|m: + N.mch + {65} h
2 7o) 090, o824
Finally we get ,, \
PO N L R L D
4 o o 2%2; oA ~ 04
(-2l 2y
cos a 0 2] o0,
LR AR T
: fbm 022 J oy 2 \o® a2 ||’
where
Hy =212 WHm .ﬂ WHM%mgh
oa sina @l 2 0824
lml = 9-1/2 Im,umel
o0, -\ 092,

Before writing down the eigenfunctions of these five operators, we have to
make a few remarks. One can show that for K < 4 all states are simple; in
the interval 4 < K < 8 doubly degenerated states show up; and so on, n-fold
degeneration appears at the value K — 4n. Besides, states with J = 0 and
J = K values are not degenerated. Consequently for practical purposes it is
enough to deal with four quantum numbers.
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Finally, let us look for the harmonic functions @ which fulfil the eigenvalue
equations of the Laplace operator and the operator N with eigenvalues
K(K 4+ 4) and », respectively. The general form is the following :

Dy, = 2 D (%, u) DELL" (4,0, 0) DYy (91 © g2).
* K

It is easy to understand tH¥ meaning of this solutiori. One can consider the
second D-function — which is the eigenfunction of J2 and J3 — as an eigen-
function of a rotating rigid top with the projection of angular momentum
on the moving axis equal to . This projection is not conserved in our case,
that is why we have to sum over different values of 4. That is just the point
where we need an additional operator to orthogonalize the obtained ».ESQO&.
The coefficients a,(x, u) have to be defined from the equations .

A9y, = — K(K +4) D1,
and . -
b@mﬁ‘ = b&w?.

These mnm@aobm are unfortunately somewhat complicated:

11/[E g K g
M M o= == ) )
ol n =23 Aw s ¥t
x u

1
xJT—p+20 —p+ DI +p— D + 1) + o 4 2) X
* W+m1x+_ IMMIMIx VU +ut0+u+ 1) —p—1) (T =)+
2 5

+ ay(x, p)op? + J(J + 1) v — 4iQ2)| D255 (2, a,0) DYy (91 © g2) + al2, p) X

. 1) .
AL (I 4 1) — 2+ — ) DB (4,0, 0) DLy (91 © 9u) +itga x
cos a : 2
3 : -
X5+ | V=T Rt D=0 ¥+ 2) DS (., 0)x
& ' .w 3
X Dlast 010 @) — | | VT =t DT DT —s42) X

87



X b—ﬂpw\lww\ AN. a uOv b“lok_& Aﬁu @ ﬁwv =0
and .
K K v
MM afep) | == — el — — e+ 1)+ BEE+4) - F + -
2 2 2 cos a
x a
_ JJ + :.+IF DE2x () a, 0) DI O ¢2)
2 cosZa 2-cos2a Ry ar (1 © gz) —
o K u K u ) 1
— Wz, p — 2)itga 5 g rt! |w:+m — x| DEIZx (4, a, 0) X
isina
X Do (91 © @2) + anlot, p) [ ——— 5
4 cos? a
X YT =) +ut )T —p— DT +u+2) x
o ; isinae s
X@iiwv %, a, ovb\:rm.g (1O@2)+ ———
. 4 cos2q

X JT+u)I—p+ DT Fp— )T —u12) DX (4, 0, 0) DIy @1Og2) |} =0

and, although it es quite easy to solve this set of equations for every particular
case, we have not been able so far to obtain a general solution;

IV. ANOTHER WAY OF CONSTRUCTING A SET
OF EIGENFUNCTIONS -

There is another way to find this complete set of functions. In fact, the
problem becomes complicated because of the requirement of definite permu-
tation symmetry properties. Without them it would be simple to construct
the wanted functions with the help of the graphical method of the so-called
“tree-functions” [17], which was proposed by Vilenkin and Smorodinsky.
We have to modify these functions, i.e. we have to find a transformation from
the complete set of ““tree-functions” to the K-harmonics. (K-harmonics are
hyperspherical functions possessing definite permutation symmetry properties.)
Thus we first construct the “tree-functions”, which are characterized by
quantum numbers

K, j1, My, js, M,
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(ji, My and j», M» are angular momenta and their projections conjugated
to £ and 7). We have to trasform these functions to a set of K-harmonics,
which is described by the quantum numbers K, J, M, », ( j1j2). In order to do
this it is necessary to carry out a simple Fourier transform. To be correct,
(j1j2) is not a real quantum number in the sense that functions corresponding
to different pairs (jij2) do not form an orthonormal set, but this notation de-
monstrates where we get these functions from. Their explicit expression is the
following :

pa o N[ we+6  u—96 2
- DPhh (E,1) = Asu MMN 1, ” 3 J2, Ilwl Jiul X
m opd x

K —4 np K+36 ul K u Rib-8 9 .,
—_— W4+ W4+ —|— —;— —1) * 2
4 * 4’ 4 + 4|2 2 (=1)
X X
1 .=+m.§+ p—9O0lK pu 2K/4
- m, ——; w—m, — | —;
2 + 4 "2 4 2 2
A A5 Gt 2m) Lo+ 2m — 2m) 2 (o o 3 (et )
A (K 42+ 1) tx! s n—m

x DFIR (2, a, 0) D] o (1 © )

where 45 consists of norming constants and Clebsch-Gordan coefficients. .
The solutions of the eigenvalue equations for K and Q have to be linear
combinations of these functions:
Py, = 2, cod P &),
Jide
where (jij2) will run over each pair of values which can give the total angu-
lar momentum J such that

J <i+j2 < K.

Looking at the structure of the coefficient, it is easy to understand that our
attempt to determine ay (x, 1) directly could not be successful.
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