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DISPERSION THEORY OF LOW ENERGY
PARTICLE-RESONANCE SCATTERING!

DALIBOR KRUPA,* Bratislava,

h was found that depending on the two
particle H.omozg.as.ﬁm.ngmemnm the particle-resonance amplitude can show
a resonance behaviour, i.e. g three-particle-resonance can be generated.

I. INTRODUCTION

In my short talk at this colloquium I should like to speak about some
mmwmonm. of the effective two-body approximation to the three-body problem
and to inform about the main results concerning the importance of the Pejerls
exchange mechanism in production of higher resonances. The more oosﬁoem
treatment of the problem can be found in [1]. .

In the scattering Processes where the scattering channel consists of three
or ‘more particles we cannot use the usual two-body scattering theory and
1t is necessary to employ rather complicated theories as, for instance, that
.om Faddeev or others. When, however, two particles in a gw@m-@@ni&% state
Ea@wmcwm strongly via a resonance, a certain reasonable approximation can be
Emaw, Le. the three-particle state may be replaced by a quasi two-body one
oowwmumﬁbm of an unstable particle or “isobar” corresponding to the wmmocxazm
pair .E:m the third particle. The three particle — three particle scattering
amplitude can then be approximated in a certain energy region by an “isobar’’

-amplitude describing the quasi two-body process of the third particle + reso-

nance — the third particle 4+ resonance,

In the case where two of the particles from the three-body state form a bound
state rather than a resonance state, the quasi two-body approach can M:mo
be used. It has been applied by Barton and Phillj Ps [2] to the neutron-deu-
teron scattering. They applied the on-shell N/D method to elastic s-wave
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scattering where as the input they took the single proton exchange
mechanism. This input contains the deuteron binding energy as a parameter.
Barton and Phillips found that in the case of spinless “nucleons’ the one
particle exchange force is strong enough to produce a three-body “n-d”’ bound
state. The fact that the same result has been derived from the three-body
Faddeev equations for the spinless “nucleons” interacting through Yukawa
or exponential potentials [3] gives us a confidence that by using the simple
dispersion relation quasi two-body approach reasonably good quantitative
results can be achieved.

We can ask ourselves the following question: Would the one particle exchan-
ge mechanism similer to that of the Barton and Phillips, where the two-par-
ticle bound states are replaced by the two-particle resonances, generate
three-body resonances in analogy to the Barton-Phillips calculation of the
three-body bound state? There is a possibility that it will be so, and it has
bzen suggested by R. F. Peierls [4] to explain higher resonances in the z-N
scattering. Since Peierls proposed his exchange mechanism (Fig. 1) as one
being responsible for higher scattering resonances there has been a great deal
of controversy about this question, but most treatments have centred on
triagle graphs incorporating the Peierls mechanism [5]. However, such graphs
are best regarded as terms arising in an iteration solution of the full N/D
equations. For this reason and also because of the similarity of the particle-
-resonance scattering amplitude with the particle-bound state one and encoura-
ging results of Barton an Phillips we solved the N/D equations for the particle-
-resonance amplitude taking the Peierls exchange mechanism as the dynamical
input. We found that the proposed dynamical mechanism does lead to a
resonance enhancement if the parameters of the two-body resonance conspire
favourably. _ :

II. N/D EQUATIONS FOR THE PARTICLE-RESONANCE AMPLITUDE:

In the following we restrict ourselves to non-relativistic kinematics. We
suppose that a resonance a* of mass m, is formed of two' particles b and ¢
of different masses m and u, where m, = m +u+eand e —e—id, e being
the resonance excitation energy and & its half width. The particle-reso-
nance amplitude describes the process

a* 4 c—>a* 4 ¢,

where the stable particle ¢ is identical with the particle of mass 4 in a*. For
the sake of simplicity we consider a*, b, ¢ as being spinless.

In setting up dynamical equations for the particle-resonance amplitude
M(k?) in the nonrelativistic limit we assume that the amplitude has only the
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right-hand cut along the real positive k? axis, where kisthe particle-resonance
centre of mass momentum and the left-hand cut, which depends on the effective
exchange mechanism representing the dynamical input in the N, /D calculation.
_Hr.m exchange mechanism which is expected to be a dominant one is just the
Peierls mechanism, Fig. 1, since it contains the left-hand singularities nearest
to the physical region. .

The discontinuity of the partial wave particle-résonance amplitude across
the right-hand cut is given by .

, dise. M%) = 2 ik MUR2) M2 1)
and can be derived fromthe unitarity relation of the three-body amplitude
[1, 6].

. mwmommmsw.wm now to s-wave scattering [ = 0; we calculate the s‘wave pro-
jection .cm Fig. 1 in order to determine the left-hand cut and the related dis-
continuity. We find the following expression:

m 4 2u)?
. . lwss*x_.ﬁ + 2u) -
167(m + 2u)2k2 - m?
5 — 2mer - k2
wm + p)
It is convenient to introduce a new dimensionless variable [2]
(m + 2u)k?
2= : ®
2u(m + p)e

which measures the kinetic energy in units of the excitation energy, and also
two dimensionless parameters )

d 1%
& m :
of the two-body resonance.
We also define .
2u(m + 12
My = | B ) (5)
m + 2u ;
and similarly for B(z), so that
g (+f)e I +2f)z — 1 +i
B = 2. f) log (+ 2f)z +ig ()

2 fA420)1r ° 214911 4
where we have dropped the superscript I = 0 on M and B.
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It is 4<o§r-¢rmm to notice that the logarithmic left-hand cut is located in
the lower half complex z plane and runs from .
P A 1+ 2f)(1 — ig) 7
= —— to = -—1q9). 3
L= s 7 2= (. g (1)
The slope of this cut is controlled by g and the length of this cut is determined
by the value of f. The relative positions of both cuts of the particle-resonance
amplitude are shown in Fig. 2.
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Fig. 1. The Peierls exchange mechanism Fig. 2. The positions of the right-hand and
for the particle-resonance scattering. left-hand cuts of the particle-resonance
amplitude.

From the definition of M(z) and Eq. (1) it follows that the discontinuity
of M(z) across the kinematical cut is
~dise. M(z) = (2)V2 M(z4) M(z-), (8)
which implies that assuming convergence and using the standard N/D method
we have to solve the following dispersion relations:

-2

B ¥ z z N(¢t) di 9
Dley=1—— #t — 2) . ©
t
6.
w1 [ D30

w t—z
[

We solve these coupled integral equations by the method of Pagels [7]
generalizing his calculation for the case where the left-hand cut is off the real
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axis [6]. The advantage of the method is that the solution of Egs. (9) can be
expressed in closed form in terms of B(z). . :

The functions N(z) and D(z) for z real and positive have been evaluated
numerically for various values of the two parameters f and g. In all cages
we find that the particle-resonance amplitude has a peak structure. In some
cases the peak ‘structure is very sharp (the zero of D(z) is close to the real
z-axis) in other cases the peak is rather shallow. Numerical investigation of
the solutions for different values of f and g shows that for each value of f in
(0.1, 1.0) there is a value of g for which the zero of D(z) is close to the real
2 axis, z & zy. The zero of D(z) is a pole of the amplitude. If this pole is close |
to the real axis we shall interpret it as a resonance in the particle-resonance
system. The corresponding kinetic energy of the particle-resonance system
at the resonance pole is By = xge, which implies that the corresponding three- -
body resonance energy is

E = (m -+ 2u + &) + axpe.

The mutual dependence of f, g and zo, which was numerically investigated,
Predicts therefore a specific correlation between the position of a three-particle-
resonance and the two-particle subsystem resonance parameters ¢ and f.

‘When the present model was further generalized to include the two-particle-
Tesonances with spin, the particle-resonance amplitude still showed the reso-
nance enhancement but not so marked as in the spinless case.

III. CONCLUSION

The solutions we have obtained indicate that for certain values of the
two-body resonance parameters f and g the Peierls exchange mechanism is
strong enough to cause the resonance enhancement in the particle-resonance
scattering amplitude, i.e. the resonance formed of three particles. ]

Allthough our model is quite simple, for instance we do not consider more
than one two-body resonance in the three particle states and we made other
simplifying assumptions, the model considered above permits us to investigate
quantitatively the possible generation of three particle resonances via this
mechanism. We may also expect the resonance pole of the particle-resonance
amplitude to cause an effect in all channels coupled to the particle-resonance
-one, therefore the investigation of the Peierls mechanism should be extended
in the future to include the complete coupled channels solution.

l
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