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OPERATOR PRODUCT EXPANSIONS
AND HIGH MASS PHENOMENOLOGY!

WOLFGANG KUMMER,* Wien

: Mﬂ o.?m _a.an.o m.mmm.onmwemoz.om the product expansion of operators at
lig: t-like distances is given. It is shown that the field of light-cone physics
includes not only the , traditional* applications of deep inelastic mwmow“.oz.
-proton scattering and similar situations, where a large fourmomentum is
transforred from an external lepton line. The light cone is tested as well in

certain cases where an infernal integration i i
: ] gration is dominated b - E -
pagators with large masses. st e

1. INTRODUCTION

One common fzature of the general concepts which have been abstracted
w.oﬁ me theoretic models and applied to hadron physics was always their
basic m.-Bw:o:.&ﬁ This simplicity is shared by the recently studied product
expansions of operators [1]. It can be shown in the perturbgtion theory that
the product of two field operators A(x)B(y) at different m@.soo-ﬁsm points
can be expressed as a sum of operators O("(y) at one of these points multiplied
by ¢-number functions depending on the distance z — ¢ — y ’

N

A@)Bly) = 3 Cul2)0tn(y), (1)

2~0 n=0

where the number N of the field operators O™ is finite. The Ca(z) are singular

ply from the dimensions of the fields 4, B
and QE. [1] mba.w multiplied possibly with powers of logarithms. ‘P_nwo:mm
there exist oonn,m;b applications of expansions at small distances ([1] and see
below) the step towards a more general applicability has been performed by
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Brandt and Preparata [2] who suggested an analogous expansion near
the light cone 22 ~ 0 .
A(x)B(y) " 2 Onlz; y)(—22 + iezo) 7, . (2)
2E~0 n

where we have now omitted logarithmic factors. The bilocal operators O, can
be thought of as expansions o

On(zsy) = 2, OO0 . (y) 2. . 2. )

i,m=0 :

The additional indices o ... &y, after the comma in O™ describe derivatives
of the local operator O{™. Egs. (2) and (3) amount to just taking all (infinitely
many) terms in (1) constructed from one density alone, and selecting those
with the same denominator (—z2)?. The iez is introduced to damp high
energy intermediate states [1]. ,

For the applications to be discussed below, (2) is assumed to hold for electro-
magnetic and weak current densities. If this is true, the vacuum expectation
value of an expansion like (2) for current densities is relevant for the high
energy limit of the total e+ 4+ e~ — cross-section, the proton-proton matrix
element becornes important for the Bjorken scaling limit [3] of deep inelastic
electron-proton scattering [2], {4] and also for an analogous limit in exclusive
reactions like et 4 ¢~ — hadrons 4 y, photoproduction or electroproduction
of lepton pairs of high invariant mass [5] etc. In the latter examples the
T-product of (2) is to be used which entails the simple replacement iezq ~ ie.
Another example are the nowadays very popular photon-photon reactions
which may be observed in positron-electron or even better in electron-electron
storage rings. In Section IT we present our ansatz for current densities, Section
IIT is devoted to the applications. For farther details we refer to ref. [6].

II. CURRENT DENSITIES ON THE LIGHT-CONE

In order to obtain the general expansion which — hopefully — is valid
for commutators as well as 7-products ete. for light-like relative distances
2% ~ 0, one may use [2] — to guide us — the phenomenology at the tip of
the light-cone, z ~ 0, first.

It is undeniable from the success of the current algebra that local operators,
transforming like the current and axial current densities of the free Dirac
field, play a fundamental role even in hadron physics alone. Thus one is
inclined to express the product of two densities of this type by operators
which we identify again as current densities (j,) and axial current-densities
(js1u)- For completeness we include moreover the other densities of the Dirac
field as well (scalar 8, pseudoscalar P, tensor 7).
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Hence the most general expansion near z ~ 0 reads for a product of con- This follows from the causality

served currents

Ja(®) joly) = (Jol®) jo(y))H, 22 < O (10)
Ju(@)july) HM Pylagd4(z) + M12aJXy)i22 4 ammﬁs\,—\wu - and the hermiticity (4, B are indices of, say, SU(3))
- . . - <A -B + — <4 , B p- A_._.v
T Bums jio(y)0@222 + auP g Tod])f22 1 O(e-2), ‘ ) (Ja (@), Jg @) = (45 (%), 4 G:mum,

e Among the hermitian operators one may include also those with an “abnormal”

C- parity consisting of
Jo =T (@)a?y) — P ()ra? (@) ,_ (2

. Py =g,00 mmv&s ,
Pures = 9wl — G368 — 9usd8 + gragualle ()

and the shorthand 22 for —z2 + lezp is used. One may argue that especially
the success of the current algebra — which forces the equal time commutators
as derived from (4) to be finite — excludes anomalous dimensions and possible
logarithmic factors in the a;. From bermiticity, causality and C-parity it is
easy to determine the Symmetry coupling, if, e.g, all densities behave like
octets (or nonets) in SU(3).

The transition analogous to the one from (1) to (2) is of course an assumption.

ete.
This term contains, e.g., the energy momentum operator as well [6].

III. TESTS OF LIGHT-CONE EXPANSIONS

We oo:mm@om first the Fourier transform of the matrix element of two current

6 trans densities

Possibly it is the only manifestation of scale invariance in nature [7]. Gener- - T T ; : (13)

alizing also (5) to obtain correct current conservation on the light cone [6] My = EHVIJ. e7tke diz (Bl ju() ()l ,
S = gu(0@ow)) — W@ (6) - where the commutator or the T-product can be inserted equally well and
n “ where Jx > and |f > are general hadronic states with momenta p@, ... p(m,

Suras = gu 20 — Grad 0 — g wodP0" + g w9y (9D5V) For any timelike linear combination of some or all of these momenta
« M\mwwv = Am-.@gmm@v»m‘n = m\saemm.shwv ) : HM | . - P = M Cipi (14)
i

one arrives at

.. ” (e P we calculate now
- 7/ -) Ryt~
?@K;Smé@i? + SuwasBS + SR + SRy . (0 T = [ d4ké(q2 — £2)0[y — (PE)IM 1y — , (1)
with a huge freedom in bilocal operators to be obtained in the R;. We list , = % dixD(z, P, g2, v) << Bljulx) §s(0)|o >.
~-. & selection based on the restriction to operators without derivatives in the :
basic term (cf. (4)) -

In the system with P = 0 one finds in the limit v, g2 — 00, Po < v, @ = —q%2v
= fixed (A4-limit) for @ the result [2]

By = aodt(z) + 2402 4 owy)/z2 1 .. (8) v? (16)
- . ) . = sl R
B = (930 £ (6o c0)ie® + 208t ®pes + camvoz jiy P 5 — mTisin| T+ wn
+ 222BSD 0% | Tagy]/ oz - @TE £ (B a))ofzi2 4 .. S 12 = (Pz)? — P22
R{E» ”.w%vﬁv In 22 4- Nemumnvi\m T *  from which one can conclude that the regions
The bilocal operators 1P(z; y) me\a. are hermitian and fulfil relations like . , ‘ ﬁ <1 el < 1
Jolz; y) = & ja(—2; ). (9) _ : 27

-
[
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give the awmmzamm_ contributions to the integration in (15). This is equivalent
to the region around the light cone

a2 < 4jg?.

”E:m owbmamgaod has been applied originally [2] to the special case of deep
inelastic lepton-proton scattering |a > = |8 > = |p> and to the problem
of formfactors (T-product, g = o, | > = |p > ), where only one timelike
Moﬁnw.osmzazs P is present. Performing the calculation in the same system
P = P = 0 without change of integrations in (15) gives (p? = m?)

2w[v|

Tur

- My (17)

This consideration is valid also for the more general case and yields “S-wave
sum rules” [6].

. The Hwoﬂ.\. prominent example with the largest amount of experimental
E»..owbupﬁos is the case of the deep inelastic electron-proton scattering, where
(¢ is the momentum transfer from the electron, ¢2 < 0, go > 0) )

do/dq2dy oc W ,,(p, g, W)= ’ (18)
= [ dte < W, pllju(@), jO)llp, W > =
= (09 — $9)V1 + (s + Pl — Puprg® — Ju?}Vs +
. + eurasq*WEVs + euvappgf(Wq) V.

In this expression » and W represent the fourmomentum and eﬁm polarization
moE.éoo.aoH of er.m target proton, V; = Vi(¢?, »). In the commutator only the
d-coupling contributes (7, T have “abnormal” C-parity, 8, P, jis the normal
one) and

(22 — iez0)™! — c.c. = ime(29)0(22) ° (19)
(=22 4 iezg)~ 12 — c.0. = — is(zo) G(22)(22)-V/2
In (—22 4 iez) — c.c. = ire(z0) O(z2).
With the Fourier transforms of (19)
| d*zeletins(xo)d(2?) oc £(g0)d(g2) (20)
Jdzeiezie(ze) O (a2 (@212 oc [Llge(go) O(q2)(q2)- V2
| d4zeiezine(zy) O(22) oc &(g0)d'(q?)

onAMwémm:m m:mmr.mmmgmo?qmum%m%gmoosol_ozmmo:owm: the matrix elements
o . .
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The quickest way to see the effect of a specific term in (8) on the A-limit
of deep inelastic electron-proton scattering is exhibited only for the first
term in R,. The contribution to W, reads (time reversal allows only even

. 5 - B
powers of K% b the “abnormal” justates with i28(%;a(y)ys P(y) — PrsWia))
\ 9
21\2 o \4 ,
P 1Caip Iv + Cayp | +...] 8g%e(qo) (21

o, o

so that the Cs-part gives
7 §'()

Vi 928" (g2) + Y 0'(¢%)] = + 0(2).

v

Oy is accompagnied by §'"(w)/y ete. The (in general unknown) constants Ch,
determine therefore the even moments of a function V(w) in
V(o)

v

4+ O(»-2).

—
Vi

All other bilocal operators constructed from Dirac densities yield the same
type of contribution to V) starting with §"(w)/», if they contribute at all to
this order »~1. The absence of the zeroth moment

[V(w)do =0 (22)
is a simple expression of the absence of operator Schwinger-terms [4] in any
ansatz constructed from Dirac-densities alone. Together with the positivity
property of V; we conclude

V(w) = 0. .
This result seems to be in agreement with the vanishing of oy/op found in

SLAC-experiments [8]. This property of our ansatz is not astonishing, since
it is recognized now as a general feature of a theory based on interacting

fermion fields of spin } {quark, parton). .
It is straightforward, but lengthy, to do the same calculation for'the other

terms in (8). From dimensional arguments a result (B; = Bj(w), 4¢ = Ayw),
real)

Vi Bafp + Ao + Bujpt + O(-1) (23)
Vo = Bijy? + Asv5/2 + O(r3)

'iVs > Agf|/v + Bajp + O(32)

iVs > Ag?2 4 Byp® + Ov-52)
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can be expected. Actually from 7 = By = 0,als0 43 = A4 = 0 can be oozo_rm-
am _umom:mm of an inequalities for V;’s [9]. Thus despite the large number
of possible amiwm In the ansatz (8) the result for the “scaling functions is sim-
ple. The same is true for examples involving amplitudes (and hence the T-pro-
duct), asine.g. e+ 4 ¢~ - hadros + y [6]. _ :

,5@ ﬂ..z.z now ew a simple example for “internal” virtual masses. The electro-
Epmz.a.:a correction to the hadronic matrix element can be described by the
effective Lagrangian (4 is a cut-off)

Lesr = (2m) %02 A4z ()1 (0) [ dketi= A2 {kaA2 — K2}t (24)
After combinig the denominator & la Feynman, the integral
D%, A2) = (2m)~4[etkrd*h A2(k3(A2 — k2)}-1 (25)

can be easily reduced to a finite integral over the first derivative with respect
to the (mass)2 of the causal Wightman-function:

m&wﬁﬁu }v
o2 o (2m)—4 % dtke-thz(f2 — ©2)~2 = (16im)-1 ﬁw®ﬁl&mv.~mcn:_\rlﬂmv _
— inO@)HD (u |/z2) (26)
80 that

@ = A/8[O@)HM A/ z2)) 2 + 20(—22) KyA) =) li) ==, @)

.SEor.mroSm that only the wommoz |23 < A~2 is important. As long as (24)
18 considered v@aﬂwms states with a low fourmomentum, the tip of the light-cone
alone x ~ 0 contributes. This happens because in this case

z= Ea-t
|£2 u\ 1

can be introduced and this makes all higher terms in (3) together smaller b
at least a factor A1 with respect to the first one — as long as the first emEM

= 0 alone yields by itself a finite contribution on the regularized integral
Otherwise a knowledge of the whole light-cone is required. .
. If our bilocal ansatz (8) contains the SM-term, belonging to an SU(3)-octet
there emerge quite naturally (linearly diverging) tadpoles with T = 1, Ea,
I=0,1I5=0 from the local operator § in (4) for electromagnetic mass-dif-
ferences as required by the Coleman-Glashow-analysis [10]. Note, however
ﬁr.ﬁu the full light-cone contributes in other high energetic rm&oim womoaoum“
with radiative corrections.
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An example which does not require any regularization is the semileptonic
box-graph in the renormalizable theory of weak interactions [11]. Here scalar
densities occur. The vector term j, in the expansion at z ~ 0

S@)8(y) = ... + ajuly) 2%/z*
z~0
turns out to represent just the hadronic current in semileptonic weak interac-
tions which may be assumed to be conserved (CVC). Here the tip of the light-

-cone alone is essential for low energetic (decay-) processes.

With respect to nonleptonic weak interactions, which can be treated just
like the radiative corrections, but with an intermediate W-meson instead of
the photon, we just note the amusing fact that the intermediate — vector —
boson thsory does not yield “‘tadpoles” of about equal strength for parity
conserving and parity violating amplitudes of hyperon decays. The renormali-
zable theory with scalar bosons on the other hand gives a consistent picture [6].

Hssentially similar considerations — only slightly modified — can be applied
to radiative corrections of weak decays (in the V-A-theory) as well [6].
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