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GROUPS AND DYNAMICS!

Finite dynamical symmetry transformations for the Kepler motion

QHN> GYORGYI*, Budapest

In recent years there has been considerable interest in the dynamical symmetry groups
of simple systems. Particular attention has been devoted to the classical one-particle
problem in a —1jr potential, i.e. the Kepler motion. For this problem, characterized
by the Hamiltonian function -
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two well-known vectorial constants of motion exist (see e.g. [1]): the angular momentum

=qXp, 2)
and the Laplace-Runge-Lenz vector
zHH@AMIEVu 3)
Po \ ¢ mg
where
Po = (F 2mH)L/2 \ (4)

(upper and lower sings refer to negative and positive energies, respectively). The constants
of motion L and K satisfy the Poisson bracket relations of the Lie algebrs of the SO(4)
or 80(3,1) groups:

(L, Lyj)ep = €igsLs, (L, Kj)gp = eys Ky, (K, Ki)ep = + &iss La; - (5)
the notation
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has been used here (summation over repeated indices is understood). The finite canonical
transformations of the basic dynamical variables q and p, generated by the angular
momentum L, can easily be derived from the differential equations of the group, since

1 Talk given at Elementary Particle Physics Seminar at Pezinsks Baba, September
2225, 1971.
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these are linear and can mmmm_% be integrated. In the case, however, of the full group
generated by L and K the integration of the differential equation is no longer possible
since these equations are nonlinear [2].

In the present paper we propose to consider the following transformation of the basic
variables [3]:

X = poq, Y=rny'p. . M
(An analogous change of variables is usually performed in order to find solutions of the
Schrddinger eigenvalue problem of the H atom.) The transformation (7) is not canonical
in the usual, restricted sense;

Alvxuvlvv.,ulv.«”“lm.mlvm, (8
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however, defines an extended canonical transformation [4]. This new scheme allows us to
introduce a new Poisson bracket expression defined by
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F Gy = — o — — g {9)
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The constants of motion (2) and (3) can be written as follows:
. =xXxy, K=3(Fyx i xyy. , (10)
These obey, together with the quantities
X =314 y2)xF (xyly, Y =uay, (1)
T= Txy, U=3a(1Fy), N=1{a(1tyy,
simple Poisson bracket relations. Define the following 6 X 6 skew-symmetric scheme :
0 Ly —L,
—Ls 0 Ly | (£) K | —iv
Ly —Li 0 |
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This notation makes it possible to condense all Poisson bracket relations between the
quantities (10), (11), into a single formula:

(G, Grr)ey = 811Gra + Ssu@rr + 1k + 851Gk . (13)
One has further
GrsGss = 0, (14)
er7rorsGpolrs = 0.
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The basic variables X, y can be expressed through the Gy, as
x=X4+ K,
y = AQ + N< vlu Y .

The linear Poisson bracket relations (13) allow us to determine, e. g, finite transform
of the quantities X, ¥, K, U, N, and, by virtue of (15), those of the basic variables x
under the full invariance symmetry group generated by L and K. It should be st
that this group is not identical with that based on the Poisson bracket relations (5
investigated in {2]. These two kinds of groups are, however, isomorphic; both act 1
tively on the manifold of isoenergetic orbits. Moreover, finite transformations of th
as well as of the basic variables x and y, can be obtained for any element of the S
full dynamieal group of canonical transformations, generated by the G.
An alternative discussion of the integration problem has been given in [5].
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