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GROUPS AND DYNAMICS OF PARTICLES!

MILAN NOGA,* Bratislava

L. STATISTIC BOOTSTRAP MODEL AND STRONG COUPLING GROUP

Among several dynamical models which have the properties mentioned
mwwﬁw we start by mentioning the Chew static bootstrap model [1] that was
quite popular several years ago. According to the Chew bootstrap philosophy
any hadron is a bound state or g resonance consisting of all hadrons. Forces
which are responsible for binding this compesite system together are due to
the exchange .of all possible hadrons in the crossed channels. This idea can
be very simply demonstrated on the static .Emmos-vmw%ob interaction described
by the Chew—Low equation [2].

Consider the static meson-baryon scattering of the form

T +a —> §+P . (1)

Srmw.mgmzmwmmbgo vmqosmi?rerow. quantum numbers. Let 4 be a baryon
beeing a bound state or a resonance in the partial wave denoted by fa(w),
where o is the initial Pion energy. It is clear that the mass of the baryon 4
is associated with the pole of the partial wave amplitude f4(w) and the residue
in this pole is simply a product of two reduced pion-baryon oozw_mzm constants

% and G%. Using the N/D method one can write the following equations
N 4(wa)
Diy(wa)

G — — 2)
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and
Dy(wa) = 0, (3)

where w4 is the position of the pole of the partial wave amplitude and Dy (wa)
is the first derivative of the D function at this pole.

The application (3) of Eq. (2) under the assumption that forees binding
the composite system 4 are well approximated by single particle exchanges
in the u channel leads to simple algebraic relations involving pion-baryon
eoupling constants

4Gy =D Cup(e6y, (4)
B

where C4p are crossing matrix elements from the u to s channel. When the
solution to Eq. (4) is known then the analysis of Eq. (3) gives the mass spectrum
of baryons as the function of their spins J and isospins I of the form [4]

m(l, J) = mo + ol(I + 1) + pJ(J + 1), (5)
where mg, o, and f are constants.

It was recognized by Cook, Goebel and Sakita [5] that the Chew static
bootstrap model can be completely reworded in the group theoretic language.
Use was made of the Chew-Low equation in the so-called strong coupling
limit. The strong coupling theory requires that in the limit when all pion-
baryon coupling constants tend to infinity, the scattering amplitude given by
the Chew-Low equation must be finite. .

Let us define the pion-baryon 2% 4-a - b coupling constant as a matrix
element of an operator X,

b | X @ ~(6)

taken between baryon states |a> and [6>. Here « represents quantum numbers
of the pion 2% The mass of the baryon a, m,, is also defined as the matrix
element of a diagonal mass matrix M as

Mg = AQ_N—N_SV (7)

The invariance of the interaction under a symmetry group of the Hamiltonian
requires that the operators X, transform as components of the proper tensor
under symmetry group transformations. This yields

(Ka, Kg] = ifapu Ky (8)

and

[Ka, X5) = idupy Xy, (9)
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where K, denote the generators of the symmetry group K, fus, are the structure
constants of this group and dapu specify the tensorial character of the operators

a- The strong coupling theory gives rise to two additional dynamical rela-
tions, namely,

[Xa, Xg]=0" (10)
and .
; Aap = 3 Auulyg (11a)
where
Aap = [Xa, [M, Xp]). . (11b)

It is evident that the commutation relations (8—10) define the Lie algebra
of the Lie group beeing the semidirect product of the invariance group K and
the Abelian group T' generated by the mutually commuting operators X,.
Unitary irreducible representations of this algebra determine the pion-baryon
coupling constants which are exactly the same as those following from the
Chew static voogﬁ.@% model. This is so because the bootstrap equation (4)
is nothing else but the matrix element of the commutator (10). Once the
matrix elements of the operators Xy are known they can be inserted into
Eq. (11) and a dynamical equation determining the mass spectrum of baryons
is obtained [5, 6]. The solution to the mass equation is again exactly the same
as the form of the mass spectrum (5) following from the bootstrap theory.
It should be also noted that a strong coupling group makes the Chew-Low
equation solvable. :

These results show how analyticity and unitarity of the scattering amplitude

completed by the bootstrap ideas can be expressed in an elegant group theo-
retic approach. ’

IL. THE CAPPS BOOTSTRAP MODEL

The Capps bootstrap model [7] leads also to group theoretical considerations

and is based on superconvergence relations of the scattering amplitude for.

the fixed momentum transfer, The bootstrap ideas in this model are represented
by the two following assumptions : :

(i) Superconvergence relations for the forward scattering amplitude can be
saturated by single particle states that result from composites in .all possible
channels. Such saturation must not spoil the proper Regge behaviour.

(ii) The set of composites must be the same as the set of external particles.
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These two assumptions are strong enough to prove that hadron states must
form the basis for the representations of some unitary semisimple Lie groups.

Before proceeding with the demonstration of the Capps bootstrap model
one is tempted to explain the first assumption of this model in greater detail.
It is obvious that the contribution from the three graphs for the forward
scattering amplitude cannot have the proper asymptotic behaviour of the
actual scattering amplitude unless some cancellation among the three graphs
is require. The first assumption is telling us that the rapidly growing terms
contributed by the three graphs should cancel among themselves and not
with a continuum part of the scattering amplitude.

To demonstrate the Capps bootstrap model we consider a forward scattering
process of massless pions by hadrons of the form

29(g) + alp) > w8(q’) + b(p') (12)

realized in the storage rings. Here «, B are isospin indices of pions, @, b denote
hadrons and p, ¢, ¢’ and p’ are the respective four momenta given by

Qu — wny (13)
&. = w'ny
ng=|n] =1
p = — nipl, po = (b2 + my)¥/2
P = —nlp'l, oy = (p'2 + mo) V2.
Energy and momentum conservation laws give the relations
Pl + 20 = Ip'] + py = E, (14)
8 =+ 9% =m;+ 280 = m} + 28w,
U = (p' — )% =m] — 280’ = m} — 2E o,
o = o + (m — m})j2E,

and angular momentum conservation yields the conservation of hadron
helicities.

This process is described by the invariant Feynman amplitude denoted by -

M} w). The crossing symmetry between s and % channels imposes on M the
restriction

M5(0) = ME(— o). (15)
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It will be seen to be convenient to devide M into parts symmetric and anti-
Symmetric in the pion isovector indices « and g given by

Mia (o) = § [MEw) + Ml(w)] (16)
and
MENw) = (o + o' ) M) — M(w)]. (17)

Next we assume that the interaction Lagrangian is chirally invariant of
the form

Ling = — @Mkn@tﬂn + wﬁwwmnu:\nﬁumkﬁﬁ , (18)

where @2 is the pion field, 47 is the phenomenological axial vector current,
F, is the pion decay amplitude, F, = 190 MeV, Vi is the conserved pheno-
menological vector current, normalized so that

[@xVi(z) = 217, (19)

and I* is the generator of the isospin group. The chirally invariant Lagrangian
for the process (12) yields low energy theorems [8]

MEZ (0) = SIFZE {0k (Iny + 3" (X0 (Xo)na —
??Mss:
— 2 (X% (X8)na } (20)
{ma=mmyp)

and

MG (0) = 2F;2 2 (2m; — m — md) (XB)pn( X)nq +
?:..Mﬁav
+ Awssw_ - Sw — 1) (X%)pn (XP)na }, (21)

n
(M=)

where (X#),, is associated with the invariant Feynman amplitude M?, for
the process @ — 28 4 b as

Mj, = 2F7! (m2 — m?) (X6 . (22)

Low energy theorems allow us to make one subtraction in the dispersion
relations for the antisymmetric and symmetric parts of the scattering amplitude

These dispersion relations are saturated by single patricle states according
to the first Capps bootstrap assumption. After tedious but rather simple
algebra one finds asymptonic behaviour of the tree graphs contributions for
the amplitudes M, (@) and M5 (w) to be of the form
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M2 (w) = 8F;2E {igo8u (I¥)pg — w [(X%en (XP)na — (XB)on —

@~ 0

1
- ANQYE : +0|— Awmv

w?

and
MEED (w) = 2F;2 3 (2m} — mf — m3) [(XP)on (X¥)na +

w-> 0 " E

1
+ (X%)on (XP)nal + 0 —}. (24)

w?2

We now apply the second part of the first Capps bootstrap mwmﬁﬁéob emﬁum
us that the asymptotic behaviour of M and M saturated by single partide

. > -
states should not spoil the expected Regge behaviour. The amplitude M ‘.v
has pure isospin I = 1 exchanged in the ¢ channel and has the asymptotic

behaviour

M (@) % 0nO01, (25)

@->®©

where oy (0) is the intercept of the dominant I = 1 trajectory. HumwmcgmM%
a1 (0) = o (0) = 0.5. This shows that M) vanishes as ® Ivuw8. wmzoor.. M
first Capps bootstrap assumption demands that the term in Eq. (23) whic
behaves as w® must vanish itself and we get

pX _“ANQVEF Auhuva& - ANuvg ANQYSH_ = iexbt ANtvg. . Awav
Next we apply the second bootstrap hypothesis of Capps that the set of
internal hadrons denoted by = is the same as the set of the external hadrons

denoted by a or b. This implies that X* are matrices and Eq. (16) can be re-
written in the matrix form

[Xo, XB] =ie0bu]r, (27)

The isospin conservation tells us that the following commutation relation
must be fulfilled

[Ix, XB8] =i gfu Xn (28)

and, of course, I* obeys the standard commutation relations

[, 18] = i gobu [k . (29)

The algebraic relations (27—29) are exactly the Lie algebra a.vm.e.wo mdﬁv.@u
® SU(2) group and tell us that hadron states of the same helicities but with
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various spins and I1sospins must f i ‘
] orm a b i i
representations of the group in question, sty el )

The amplitude 7eH has both isospins I = 0 and J — 9 exchanged in the ¢
e

channel. The part with I = 2 can be separated as

MEED () = M () — § 90 2399 (g (30)
This part has the following Regge behaviour e
Mz (0) = %O | NENE

1soscalar. This condition gives rise to the matrix relation
[X>, [me2, X67) = — m 60 . BJ
where m2 i \ .
2is the diagonal mass Squared matrix and m? is an isoscalar defined by

mi= — } [Xe, [me, X1 (33)

The imulieat: ;
e implication of Eq. (32) is that the mass squared matrix m? behaves ag -

&m.w@ sum 0&. a mommmﬁ @:Q. a com t Q@H G M mn M
..MVOHM@HH& OM‘ a .,m.oz.ﬂ vector un m A v® A v

One ¢ i
. s%momw Moo“@”ﬁo that the dynamical Eqs (27) and (32) following from
wmmmnm%%sm M.o M rap scheme are exactly the so-called Weinberg algebraic
ot chiral symmetry [8]. It was shown that they are consequences

to determine the mass spectrum of hadrons,

IIl. DUALITY AND N-POINT FUNCTIONS

Cl1 i
ﬁgmqumw__“ mﬂm Wmﬂo:& [9] have shown that duality can be regarded as a
¥ group theoretical concept, implying SU(1,1) invariance of the N-point

function. Their concept i

: Pt is based on three enerators of i

namely Ly, L, and L_, which fulfi] the Lie mmm@gm ' of she SO o
[Lo, Ly] = + L, (34)
_,wh.lu .Nw+w = .,NO . Awmv ,

They have presented the min; ‘
minimal set of gro i i
construct the dual amplitude. These rules Mmmﬁu theoretical rules Hlowing to
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(i) Associate the absorption of a particle of momentum k,, spin j, js and

of a set of internal quantum Eﬁ,bwmnm A, with a vertex operator Viks, j, g3,
4; z), where 2 = exp (-it) is a complex variable on the unit circle.

_ (ii) Requiere V(ky, j, js, 4; z) to transform under SU(1,1) transformations

as a spin J, representation. This implies

av
(Lo, V] = =2 — (36)
| d

(Lo V] = — @12t (2 — F 4, | V. (37)
N S

Here J; is in general a function of the Casimir operasors of the Poincare group

and internal symmetry group, v ,

Jo = J (m?,j, {A} )s . (38)
(iii) The transformation properties of the vertex operator under the Lorentz

and internal symmetry group are the same as she transformation properties

of the field of the absorbed particle.
(iv) Any number of external particles 1,2, 3, ..., 1, .
in a dual manner only if shey belong to the same representation of SU(1,1),

.., k, ..., N can interact

i.e.,

I (m2, ji, jis, {a}) = Js (M, j, jrs, {Ae}) . (39)

This gives a correlation among all possible external and internal quantum

numbers of different particles. - .
(v) The factorizable dual amplitude Ay describing the scattering of the

particles 1, 2, 3, ..., 4, ..., k, ..., N in that order is given by

N
1 | dz. “1-J,
Ay = — Ao_ .— — |2e — Zeq1|T 7" O (arg zor1 — arg z)
Ze ,
1

¢

e

Vknu, .w.? .w.&u Aeyze )| 10 > (40)
where C' is the integrated Haar measure and the integration is taken around

the unit circle.
One can see that once the proper representaticn of SU(1,1) group is chosen

- to descirbe hadrons then the simple group theoretical considerations.determine
the scattering amplitude and the mass spectrum condition which is in some

sense the goal of strong interaction physics. .

115

P




IV. DYNAMICAL GROUPS IN QUANTUM MECHANICS

om_.wr_w hypothesis that ar.o dynamics of a given quantum mechanical system
S %Eﬁwgﬁmamw Qﬂmﬁ._vmm by some dynamical group as well as by the
€T equation has been verified for almost all interesti i
: d important
quantum mechanical problems [10]. In Saife o oty
i : ; tum mechanics w tul
Hamiltonian 5 which is usu ieato 5 doon
: ally a complicated diff i i
a solution to the Schrédinger equation ’ _ owmwe_m_ peretor and er.ms

HY, = E, ¥,

AMMMMEE% the energy .~¢<¢~m £, and the set of the quantum numbers % of a
g quantum mechanical system, which is completely described by the wave

M.MMMMHMMMM@P W @Mmuo: Emn.wo by H. Lipkin [11] at the Lund International
e Ewoww rﬂm . H.wcmwm.% in 1969. kwooou.&zm to Lipkin there are stu physi-
e Eémwmmq %Eemmm. The stu @r%m_om.mam study the behaviour of the scatter-
i %@sm w?.u m.‘g, IBY)as a ?ﬁoio: of the continuous kinematic varia-
oy wa S u for xed values of discrete internal quantum numbers IBY.

e . physicists do the reverse, The stu physics is called dynamics and
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use of finite energy sum rules. This survey has perhaps been an attempt to
indicate the real situation, i.e. that either the antagonism between the two
aforementioned scholls of physics has never been as deep as one could imagine
from Lipkin’s talk or that the dialogue between these two antagonistic schools

of thoughs proceeds very satisfactorily.
REFERENCES

[1] Chew G. F., Phys. Rev. Letters 9 (1962), 233.

[2] Low F., Phys. Rev. 97 (1955), 1392.
Chew G. F., Low F., Phys. Rev. 101 (1955), 1570.

[3] Abers E., Balazs L. A. P., Hara Y., Phys. Rev. 136 (1964), B 1382.

[4] Cronstrom C.. Noga M., Nuclear Phys. B 7 (1968), 201.

{5] Cook T., Goebel C. J., Bakita B., Phys. Rev. Letters 15 (1965), 35.

[6] Sakita B., Phys. Rev. 170 (1968), 1453.
Rangwala A., Phys. Rev. 154 (1967), 1387.

(7] Capps R. H., Phys. Rev. 168 (1968), 1731; 171 (1968), 1591; D 2 (1970), 2640;
D 3 (1971), 3059),

[8] Weinberg 8., Phys. Rev. 177 (1969), 2604.

[9] Clavelli L., Ramond P., Phys. Rev. D 3 (1971), 988;
Clavelli F., Phys. Rev. D 3 (1971), 3166.

[10] For an excellent survey of the dynamical groups see H. M. Kleinert, Fortschr.

Phys. 16 (1968), 1.
[11] Lipkin H. J. in Proceedings of the Lund International Conference on Elementary
Particles. Edited by G. von Dardel, Lund 1969, Sweden, p. 41.

Received September 2204, 1971

117




