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ON THE THEORY OF ELECTRICAL CONDUCTIVITY
IN SEMICONDUCTING THIN FILMS UNDER A HIgi
ELECTRIC FIELD ,

VLADIMIR ILKOVIC*, Brno

Non-ohmic electrical conduetivity in thin films of non-degenerate semi-
conductors is studied using the electron-temperature approximation. It ig
assumed that the distribution funetion J can be expressed as the sum of two
functions: f = fo + f; where J1 €fo. The non-symmetrical part fi is cal-
culated from the Boltzmann transport equation with the boundary con-
dition of the diffuse scattering. The symmetrical part fo, which is determined
by the energy scattering, is of the Maxwell-Boltzmann type with an electron
temperature T'. The energy surface scattering which influences the electron
temperature 7', is characterized by the phenomenological parameter. The
electron temperature 7', and the non-ohmic parameter § in thin filtns are
calculated for the case of the acoustic mode scattering inside the film.

I. INTRODUCTION

It is known [1, 2, 3] that in the ohmic region of an electric field, transport,
coefficients (electrical conductivity, magnetoresistance, Hall coefficient etc.)
considerably depend on the thickness of the semiconductor thin films. We can
expect this size effect in a high electric field, too.

We can express the distribution function of conduction electrons exposed
to a high electric field in a thin film, similarly as in a bulk semiconductor,
as the sum of two functions S =fo+ fi, where fi € fo. The term Jo(e,To)
is the Maxwell-Boltzmann distribution function of an electron temperature 7T,,
but this is by no means the general case. Nevertheless, it has become customary
to speak of an electron temperature for the hot electrons, meaning a measure
of their average energy. In the steady state, the average energy gaines from
the electric field between collisions must equal the average energy loss in a
collision. If the collisions are elastic, therefore, the gain from the electric field
between collisions is small. If, in addition, the collisions are not predominantly
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forward or small-angle ones, it is apparent that the energy gained from the
field will have been randomized.

Thus in this electric fields the distribution function is again in the form of
a small drift superimposed on a function of energy only, i. e, f=f, + f.

processes are both present, and whether or not f = fy + f is a good approxi-
mation depends on ‘their relative importance.

When the Scatbering is not Predominantly elastic and isotropice, further
terms in the expansion of the distribution function fin the Legendre polyno-
mials P,(X), where X is the cosine of the angle between wave vector k and E
(external electric field), i. e.

fle, X) = Mo Gale)Pu(X)
it

are necessary to obtain a good approximation of the distribution function f;
this leads to an infinite set of coupled differential equations for the coefficients
Gu(e). In practice, n may be chosen small, so that one need solve only a small
number of coupled differential equations [4].

In a high electric field we have to know besides the function f; which is
determined by the momentum scattering of conduction electrons, also the
Symmetric part fy of the distribution function f, which is determined by the

In this films besides bulk scattering processes, the surface scattering proces-
ses play an important part in electric conductivity. In theory, we can include
the influence of the surface scattering processes on the momentum and energy
scattering in appropriately formulated boundary conditions.

We consider a non-degenerate single crystal semiconductor thin film, which
occupies a part of the Space: —o0 < z;y < 00; —d < 2 < d (2d is the thickness
of the film). To this thin film there is applied a high electric field in the direction
of the z-axis. We are dealing with a simple case when ¥ — 0 (¥ is the electro-
static potential which may exist near the surface), that is, a thin flm without
any space charge. In general, the Iocal density of electrons is then given by
% = no exp (— q.¥ko To) (g is the electron’s electric charge, ko the Boltzmann
constant). In our case n = n, (no is the thermal equilibrium density of electrons
in the bulk). The model adopted in the present paper is based upon the as-
sumption of spherical energy surfaces and the existence of a relaxation length
which is independent from energy. The scattering of the momentum and the
energy inside the film is predominantly due to acoustic phonons. The effective
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mass m* is taken to be a scalar quantity. Furthermore, the semiconductor is
non-degenerate, the quantization of the transverse motion of the o_aoﬁ.ozm
is not taken into account. We use the electron-temperature approximation.
We assume therefore that the quasi-equilibrium distribution function f, is of
the Maxwell-Boltzmann type with an electron temperature T,, which we
shall calculate from an energy balance equation as an unknown parameter.
The electron temperature is a function of the z-coordinate perpendicular to
the surface of the film.

From explicit expression of the electron temperature T, we shall know the
explicit expression of the energy distribution function Jo. We shall calculate
the non-symmetric part f; of the distribution function S mnwE the Boltzmann
transport equation with the boundary condition of the diffuse surface scat-

tering.
II. THE DISTRIBUTION FUNCTION

We express the distribution function of conduction electrons as the sum
of two functions

Jp, r) = fole, r) + fulp, ), (1)

where p is the quasimomentum of an electron, r is the radius vector. The
quasiequilibrium distribution function in the electron-temperature approxi-
mation is assumed to be Maxwellian with an effective electron temperature

To(2):
o
[2rm*legT (2) 1872

The electron-temperature approximation, however, has no rigorous justification.
This approximation was originally proposed by Fréhlich [56], who aummzup@m
that interelectronic collisions were sufficiently strong to enforce an internal
equilibrium of the electron systems, thus justifying the oozomwe. of an m.EoSSb
temperature. Straton [6] extended the calculation of Frohlich to include
a variety of scattering processes and the lattice amﬁwmgmzam. Sc“ H&.@e the
strong interelectronic scattering maintains a Maxwellian &modszob. is only
an assumption. This assumption has not been proved because of &rw mﬁmozﬁw
of solving the Boltzmann transport equation for N.HE\S.@JW &woei.o fields in
the presence of electron-electron collisions. In most comparisons with experi-
ments, the electron-temperature approximation agrees well with the experi-
ment. Even with electron densities of orders of magnitude below that required
for its justification, it can give a fairly good result [7, 8].

exp (—p22m*keT,). (2)

Jo =
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The effective electron temperature in the thin film is considerably influenced
by the surface scattering. The scattering is a new source of energy loss and
a current of energy appears across the sample. When we denote by P, the
P2

z-coordinate of the vector of energy flux density P — ot
m

Jiv d3p, then

the derivative dP,/dz is the mean energy change due aﬂ the current of energy
per unit volume and time,

The energy balance equation for the caleulation of the effective temperature
in the thin film has the following form :

Jj=q. \ v/f1 d3p. Now we need to know the analytic expression of the distribu-

tion mﬂnoﬁo: Ji on an explicit expression of the terms of energy balance
equation (3),

The applied electric field effectively perturbs the distribution function Jo
of the unperturbed System by supplying an average energy Ae to the electrons
and the energy surface scattering causes that the energy distribution function
Join a high electric field depends on the 2 coordinate. Thus we can write

%\. Am.Nav m.\.cAmuch
F=fole — de,2) = foe, 20) — 257220 _ Az (4)
O oz
and the perturbation function J1 becomes
9 9
b”lumbl%b. (5)
O¢ oz

In generally de and A- would be written by [9]

ds(t) = g, [ A E. (u(e')), (6)

[
Az(t) = [ dt'Cwy(t')D, (7)
v(t')) is the average velocity at the time #' of an assembly of electrons all of
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the velocity v at the time ¢’ — 0. The probability that the electron will survive
from time ' to time ¢ without collision is given (if a magnetic field is not
present H = 0) by

exp [— (¢ — )], (8)

where 7 is the relaxation time. .

Since each collision is assumed to randomize the electron velocity com-
Pletely, it follows that only unscattered electrons contribute to v(t')> in
(6, 7), so that

(E)) = v(t') exp [—(t — ¢')/+], 9

and

Ae(t) = go [ E.v(t') exp [—¢—t)]ar =
= gl | A exp [t — )], (10)

«
%SM ?&g oleels\&%Hel%ﬁit:lwv\a. (11)

) -00
If H = 0, then v(t') = v = const. .

The equations (10, 11) may be generalized to include the effect of the diffuse
scattering.

If the electron path intersets the surface at the time ¢ — ¢, and if the surface
scattering is diffuse, an electron will start at the time ¢ — ¢; with de = 0 and
will carry no current. The excess energy at the time ¢ is therefore equal to the
energy acquired since the time ¢ — ¢, and to take this into account we have
to replace the lower limit of integration in (10, 11) by ¢t — ¢,. .

The perturbation distribution function Ji, which is the exact solution of the
Boltzmann transport equation in the relaxation time approximation for the
case of a constant high electric field, parabolic energy band and diffuse scat-
tering, by using (5), has the following form :

0 0
% i ’ m.\.o ’ 2
Si= —q¢. %M By | At exp (¢'[z) — v, MM dt’ exp (t'fr) =
=l ~ls
9 o
e 0L B 1 — exp (—ayy — vl —exp (~df)],  (12)
de 2

where d; = ot; is the distance that an electron travels in moving form the
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Mwwm.mom to a point r inside the film, and ! = 7 is the mean free path. The
NHM m“wmww&&h for those electrons with v, << 0, which are leaving the surface
m:lm X MM HWM_Ha (d !&Nv\maow @ (& is the angle between the vector v and the z-axis)
Stance ds for those electrons with v 0 i i

surface z = —¢ is ds = (d + z)/cos 9. 7 % whieh are leaving the
- mwgi.vw two analytic forms of the distribution function are needed in order
fod Mmoﬁ e the system. Ji will describe the electrons in that half of the mo-
e :NM space where v, > 0, and Ji will describe the electrons in the other

) . MM ere v; < o.. When we are dealing with a sample where ¥ = 0 through-
ous, that is, a thin film without any Space change, then simply f7 = 0 at

2 = ,ﬁN N\BQ. e 0 _— o .
and f aro: i at z = d. The analytic expressions of the functions f;
y Q@.\o@&ﬂe‘ﬂ d + 2 o
fi= P I —expf— '@d@n 1— exp .l&+N (13)
04 ¢ TV, oz 0, »
=T g
- T exXpl — - = -
koT, - Py ;|1 — exp - ) (14)

1. THE EFFECTIVE ELECTRON TEMPERATURE

mMMM QmamH.EEw the effective temperature of electrons for the lattice tem-
W ! ure, the .E:&wbmmm of the film, the external electric field from the energy

alance equation (3). The current density j, for the case of the diffuse surface
scattering and the case when the mobility inside the film js milited by acoustic
modes (the relaxation length 1, is energy independent) is Q.oaoﬁb?mmw

Qw@ &NaSé
[27em*koTo(z) 112

Jz =

A(8), (15)
where

A(¢) = 4/3 — Dol + &) — Dy(yy — &) + Paln + &) + Py(n — &) (16)
and

_ - ae
n=dlla, §=2fl,, Bya)= " €XP (—at). (17)
1

The integral Du(x) may be expanded in series:
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& i o1 (—a) (—1)kok s
n = (—1)p - e i
== =1 (n—1)! + (R—1)(n—2)...(n — 1 — k) (18)
-0
For thin films (¢ € 1) A(£) has this simplified form:
A(€) = 2n(n — Inp) + 2£2(1 4 1/27). (19)

The z-coordinate of the vector of the energy flux density P and its derivative
are expressed, after substituting the function f; into the expression for the

vector P, as follows:
2k T, \24T,

P, = —3konola sy B(§), (20)
dP, — Skl mnwnlc» 2 [d2T, BE) + B(¢) (4T, N+m§ mlw . @)
dz m* dz2 27, \ dz dz dz

where
B(§) = 2[3 — Puln + &) — Pa(n — £). (22)

Again, after the expanding of the integral @4(«) in series (18) up to quadratic
terms, we get for B(£) the following expression:

B(§) = n(l —n) — £. (23)

The explicit expressing of the last term (9¢/dt), of the balance equation
depends on the kind of the energy scattering processes inside the film. The
mean energy transferred from electrons to the lattice by the scattering on the
deformation potential can be expressed for a non-degenerate semiconductor

as follows [10]:

e 2koT . \1/2 8m*s2 [y
= — ’ — (T, — To), (24)

ot a m* kTo 1,

where s is the velocity of longitudinal sound waves.

Now, we can write the energy balance equation by using the relations

(15, 21, 24) as follows:

N d2y o du  8m*s? 1 (qeEl, \? y
[ —m) = 8155 — 26y SkTo 3\ koo
X [n(n — Inn) + £2(1 + 1/29)], (25)

where «w = T./Tq — 1.
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Pu(d) = —3gngy, [ 2HeTe(d)\12 [aT,

Tm* ﬂ zed [7(1 —») — P = Wnoky [Te(d) — 7]
and hence . "
mlg L W (o> e

€ ey n(l — 2y’ ) 2kTo ) &

M. (wm can m\wm.ﬁ:uﬂm unc_z _.L_@ mmm.:—:_: 10N Nu +AN == m ‘a& ‘:m‘w ?TO _ ‘
A v NA v
E4 electron
on Om. &.rm NlOOOHQ-Hm~$. H.ro neces-

conditions ig ry
U = E A 2 ~ ’ 3L T,
8m*s2), qlscﬁ@m.TQTN Zhlo
where Sl F o 1| B (29)
Q ”W Q«N& MX
6 \&oT
w
- a7 Elih.fmi 14 2y
X 7 ’ Qv Ag*u.m ..—Mﬂm ,Qv ITMWAw = v
w 8m*s2 %
sty VO wl— 16 ’
~'Mdv
STy 1120
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We can see that the effective electron temperature in a thin film depends
on its thickness 2d and on the z-coordinate as well, in the case when no energy
recoils on the surface. For the mean value of the effective electron temperature

we got:

(gela)? 72 3koTl
B (2 — gl )BE + C|—F——— (1 — )| B2. (31
T = ety O T RE + Ol — ) By (31

1V. NON-OHMIC ELECTRICAL CONDUCTIVITY

The electrical conductivity of a thin film is determined by the relation:
d
H .
o dzja(2). (32)

= 2dE,
“a

We use for the sake of simplicity the following notation:

u = u, B2 | C&E2, (33)
where
(gela)? 3koTo
h=———"—(n2 —nln C——y(l —n). 34
LT etk (? —nlnmy) + prns iad | (34)

By putting equation (33) into the relation for the current density j, and
integrating over the thickness of the film we shall get the following relation
for the conductivity [under the assumption 4 < 1 (warm electrons)]:

ela 1 2 1 3u; — Cn?
Q”t[ w: dnTmﬁ.l ITE ~|t@w . (35)
(2rm*kepT)1/2 7 3 6

From the assumption # < 1, we obtain the condition for the external
electric field in the region of warm electrons, when the electrical conductivity
can be expressed by the relation ¢ = oo(1 + BE2), where gy is the ohmic
conductivity of the thin film, g is the non-ohmic parameter, representing

a deflection from Ohm's law:

Anmwavm QN 3koTo —1/2
Eg{————— (2 —nlh Cl—+——ql — . (36
N P W — g lmg) - C s =l —w (36)

From equation (35) we get for the parameter 8 the following expression:
9o To(n? — 7)

g = W (E (2 Inn) 4 C 2 (37)
N 6 | 8m*s2koTo d L 4m*s? I
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approximation (the mobility limiting mechanism will be assumed to be the
acoustic mode scattering) is expressed as

To\r2 4q0l, -
= g r,) o = S(2mm koo (39)
From the formulae (38) and (39) we get
. 3nud
# = po(1 + BE?), where f = — . (40)
6452

The relations (38) and (40) enable us to compare the effective temperature 7',
in thin films (relationship (31)) and the non-ohmic parameter 8 in thin films
(relationship (37)) with corresponding quantities in bulk material. This com-
parison is ilustrated in Fig. 8 for n-Ge, T = 100 °K, E; =10Vjem. We
can see that the heating of the conduction electrons is smaller in thin films
than in some bulk material, with the same electric field. 1t is the evident
result, because the conduction electrons gain a smaller energy from the electric
field in thin films, than in bulk materials (it is expressed by the product j,.E,).
Similarly, a deviation from Ohm’s law is smaller in thin films than in bulk

materials, with the same electric field.
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