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THEORETICAL ANALYSIS OF A PULSE METHOD
FOR ﬁmbmgmzaq DRIFT MOBILITIES

JULIUS KREMPASKY?*, Bratislava

An exact solution of the problem of measuring drift mobilities using the
known Shockley-Haynes pulse method is presented. The point, line and
plane sources, respectively, of injected electric charges have been taken into
account. The analogy with go,ggm:l:m of thermal diffusivity has been
used by the mathematical solution of differential equations. It has been
mw.:.udwz that & simple model generally used for the caleulation of drift mo-
.v_baﬁm by the Shockley-Haynes method is valid only in a special case. Many
important conditions should be fulfilled if this simple method is to give
aoﬁ.wma results. It is known that we measure only the so-called ,,ambipolar*
Sogr.e% when the conductivity is intrinsic or near intrinsic, respectively.
In this paper some methods for the caleulation of the proper mobilities of
electrons and holes in such a case have been discussed.

I. INTRODUCTION

In the last years direct methods of measuring drift mobilities have often
been used, especially in the research of amorphous materials, as the measure-
ment on the basis of the Hall effect cannot be easily interpreted. Various
methods for direct measurement of drift mobilities are known [1—4], but
erm. most often used is the famous Haynes-Shockley method [5—7]. By nwgzm
of it .gm mobility of charge carriers of many crystalline and amorphous
materials were measured [8—12], its principle is based on the generation of
a space electric charge in one point of the sample and its transport due to
a constant electric field to another point. The time of this transport ¢ is deter-
Eﬁm& by the relation ¢ — d/Eyu, where d is the distance between these two
wo::mm.v u the mobility and B, the electric field intensity. This relation is valid
if the mobility does not depend on the electric field intensity and if the ,,pack-
age‘’ wm the electric charge does not disperse during the transport. Hrm ,&mg-
tegration of this package may be caused by recombination or diffuse processes
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and by ohmic currents, which are generated by the perturbation of a space
electric charge. . .

These factors have not been analysed in detail, although it is clear that
they may have an important influence on the measured quantities. The
influence of traps is partially analysed in paper [13].

Some difficulties arise when the method is applied to measure semiconductors
with both types of electric conductivity. The question is, what the time delay
t between the generation of the excess electric charge and its detection means.
It was shown that the measured value of mobility determines the ,,ambipolar*
mobility in the case when the package of electric charge does not disintegrate
during its transport. We shall show in this paper that the process of disintegra-
tion is characterized by another kind of mobility. When these two mobilities
are measured, there is the possibility of calculating the proper mobilities of

electrons and holes.
II. BASIC EQUATIONS

For the solution of the problem of the transport of an electric charge
perturbation in a sample we use the basic equation of the phenomenological
theory of the transport of electric charge carriers, which have the form

on r
= :IQaITM div i, 1)
op L
l”@ﬁlNNﬁll&dsﬁ ANV
ot e
in = 0ol 4 eDy grad n (3)
ip = opll — eDy grad p (4)
. e Or
divE =— (p— po+ no —n) +—, (5)
£ £

where n, p are the concentrations of electrons and holes; ¢,, op the electron
and the hole conductivities, respectively; G, Gp the factors of generation
of electrons and holes; U, , U, the recombination rates of electrons and holes;
i, Up the current densities of electrons and holes; D, , D, the electrons and
holes diffusion coefficients; E the electric field intensity; ¢ the electric charge
of the electron; ¢ the dielectric constant and g, the electric charge on the

traps.
During measurement there is always G, = @y = 0. Further we shall sup-
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Pose that the electric charge of the traps is negligible (i. e. g, = 0) and that
the surface recombination does not play any role. Supposing that the electrons
and holes in the measured materials are not degenerate gases, we can use fi

the diffusion coefficients the Einstein relations v o

eDy = u kT . (6)
eDy = upkT. (7)

We mrm_m ,mo?m ﬁro system of differential equations (1 — 5) for three important
cases: a) :mm majority charge carriers; b) the minority charge carriers and
©) the material near the intrinsic electric conductivity.

1. Majority charge carriers

m.ow m._:w mm._m.m of simplicity let us suppose that a sample is of the p-type
conductivity, i. ¢. # = 0. In this case we have U, = U, = 0 and equation
(2) gets the form of the known continuity equation

o
div 4 — =
iv 2, + py . (8)

With respect to expression (4) we can write div ip in the form
diviy = o, divE + (B, 4 Ey) . grad op — eDp4,, 9)

.Srﬁ,m.he = Uy/d is the external field intensity, E: the internal electric field
intensity, 4 the Laplace operator. Considering only a small perturbation in
the nobmmw.pg.mao: of majority charge carriers we can deal with the electric
conductivity in the first term of the right-hand side of equation (9) as a con-
stant. Thus wEm term becomes linear. In the second term there remains how-
ever, a nonlinearity due to the electric field intensity ;. This :ou:bv@mn?%
can be removed by the supposition that the external electric field intensit

Is much greater than the internal field intensity K, i. e. ¢

gy, > . COV

.H.,Em Ewmo;m:a o.oﬁ%ﬁob will be elaborated later into a more detailed expres-

sion. Aﬁ hen ovo:m&mzsm the space electric charge determined by the relation

¢ = &(p — po), one obtains fr i i ‘ i

o s irom equation (8) with regard to relation (9) the
Op

7
¢ — + Lou.grad g — Dydg +|@H 0. (11)
e - ot
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It can be easily found that the solution of this equation can be written in the
form

o(r', t) = 7% f{(r — uphit), 1], (12)
where 7 = ¢/ and the function f(r', f) satisfies the differential equation
1 9
Af = — I.N (13)

These results can be interpreted as follows: The influence of an external
electric field can be considered by the transformation ' = r — upE,t and the
influence of the ohmic part of electric current upon the package of electric
charges by the factor exp [—#/t], where v = g/o is a relaxation constant. In
well conductive materials (¢ > 1 ohm=! m—1) 7 < 10~ sec, and the equilibrium
arises after a very short time delay. In the amorphous materials with ¢ <
< 10-tohm™1cm™1 there is 7 > 10-%sec and therefore the detection of
signals is easier. That is one of the arguments for using this method when
measuring amorphous semiconductors.

Equation (13) is analogous to the differential equation characterizing a heat
transport. Regarding the similarity of the method of generation of the excess
charge carriers to the pulse method of measuring the thermal diffusivity we
can easily find the corresponding solution. The following functions are valid
for point, line and plane sources, respectively, on the bulk material or a point
and line sources, respectively, on & thin film (r' = r — Eyut)

7’2
7 = e oxp| e
(4mDpt)3/2 4Dyt
Q@ 2
Lhy _ _ 15
firsty = exe | = (18)
Q» -
‘vw = ————— 8X - ] 16
Fo(r', 1) (4nDpt)12 E 4Dyt e
0 r2 ][ (eDyt)i2
PO = e LY 17
I = qmpyapr P anp || -
b 72 wDyt)1/2 ]
Julr', t) = @ o exp | — Sl LA » (18)

where @, is the electric charge injected into the sample by a point source,
Q: the electric charge injected from a unit length of the line source, @p the
electric charge injected from a unit area of the plane source, @ the error
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function, b the length of the line source, & the thickness of g plate (film).

In all cases mentioned above it wag supposed that k/(Dyt)/2 < 1,

2. Minority charge carriers

Let us consider semiconductor of the n-type conductivity, i. e. when the

minority charge carriers are holes. In this case the recombination rate U, is
expressed by the formuls,

Up = , (19)

Tp

where 7, is the lifetime of holes. Then, fulfilling the condition (10) and the
condition py < elerpup, we can get a differential equation in the form

P
L B, grad g — Dpdo +2 _ 0. (20)
Tp mn

This equation is identical with the equation (1 1), if the lifetime 7, is substituted

by the term ¢/op. Then the solution is determined by the function (12) and
the functions ( 14—18), if we put 7 - Tp.

3. Semioonductors near the intrinsic electrie conductivity

op — n) o
=Un=Up—~(p— po—n+ ng) —
ot £

— Ho(un grad n + u, grad p) + kT (updp — wu,dn), (21)

where ¢ = g, + op is the total electric conductivity.
The mobilities of electrons and holes generally differ, thercfore it is not

P(r) = po exp [eV(r)/kT7], (22)
200

n{r) = no exp [—eV(r)/kT], (23)

where V(r) is the potential; 7o and po are the oou.omsﬂnmao:m of &aoﬁ.oa_pm EKH.
holes in the place characterized by 'a zero potential level. For mall va, :oﬂ .oH
this potential (smaller than 30 mV at room 88@9.%5.3 the mxwosoaw umn
functions in the relations (22) and (23) can be m.%m.noﬁameom by the eé_o an.m
terms of the Taylor series. Then, e. g., the relation between the space electric
charge ¢ and the potential V will have the form

&2

r— 24
mums.l?lsLns;zN% (no + po) V. (24)

By this relation the changes in the space electric charge are proportional to
hanges of the potential. . .

arm—wvmm.ﬁm:&:m the Wm_memosm (22) and (23) into the relation (21) and supposing

(similarly as in the previous cases) that Ey < E, and further [eV/kT| < 1,

we get the equation
kT

Jo
o - — = — 25
an_rs&@e. grad g . ugdo + p =e(Uy — Uyp), (25)

where
gy B0 (26)
7o + Po
g — o Yo (27)
70 + Po

If the recombination process has a bimolecular o:mumogﬁ.erm.b Up = U,
and equation (25) is identical to equation (11), after substituting u, — u,
and eDy > kTus. The transformation » = r — Eyuyt has now the form

i 5

' H.Hrm M%ﬁ%?mﬁ&osom above can be interpreted mm.mﬂ.uzoému .Hro.&mmouwo
charge package movesin a moEmooBQ:oen.é with a oosms.oeﬁo% near the :M.H.Em“
one by a ,transport’ ambipolar mobility w, Gmr sww:_m er.a Aw_m:iuommw wnoc o
this package is characterized by another ,.diffuse” ambipolar EOG Mdva
(27). Both relations (26, 27) have m\r.mmum% been &w@:.omm (see,e. g., [ IOEQ.
If it is possible to measure both ambipolar mobilities .§ and SM,%Bo c
calculate the proper mobilities of electrons and holes using the relations

7o\ U + ug (28)
s H + YT
Up Po 9
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_ Po\ [ue — ug
e L 8 (29)

o H@M NMH.HM.MMM mMoEﬂowcm:oaowm“ there is py > ny and therefore u, ~ 7y ~ Up;
T MouﬁMnObMﬁowow A.so = po) there is, however, u; — $(up — uy)
e 4&»: : uﬂEo Mvg mw 1t will vm. seen, the transport ambipolar mobility
thorofors , et s always .Eommzum&. by the Shockley-Haynes method,

¢ value § (up — u,) is determined in the intrinsic semiconductor.

II. CALCULATION OF MOBILITIES

I
. Mw Mrwmr%mww_m%..mgﬂmm arrangement the time delay between the generation
ectric charge pulse (various methods of realizing such pulses are

MB Mwhn oﬂuo&@eo this aw.bm delay from the transformation ¢ — r — Eyut.
: N& gm H.M ation ﬁwm maximum of a pulse moves with the velocity v = E,u
erefore the time delay is given by the expression ’
d d2

Eu U ’

= (30)

where d is the distance between t
external voltage. This relation
of the maximum of the electri

he generator and the detector, U, the constant
determines the mobility ». However, the time

¢ charge density is,

in general, defined by the

oo &~ 3 _ 3 . i

EMBMMMS&%W« = o It is possible to solve this condition for all the cases

BoUESaM m“ ove m%z?mbmozmq. We denote the relation time as 7 and the
% and ug. For special cases it } i

bl nooting b pEr P es 1t is necessary to substitute the

Table 1
Majori i inori i
jority carriers Minority carriers Intrinsic conductivity
_—
IE Electrons Holes (near intrinsic)
" £ € .
. B : =
_
—_—
U Up Up Un u =t L)
| ?
— 70 + po
A - S
up on e " “ UpPo + Unng
P

T " ] Tedm
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Let us consider the arrangement with a plane source, which is used most
frequently. With regard to the supposition that the surface recombination
is negligible, the problem becomes onedimensional. According to relations (12)
and (13) the general function characterizing the space charge is of the form

e (x — Eyud)? ¢

z,t) = const. t 12 exp| —— ———m—————|. 31
o=, 1) Pl 7 2 . (31)
The time of the maximum of this function is determined by the relation
1 1 1 eqx? \1/2
=—|——4|-+ , (32)

where

Expression (32) is very complicated for the calculation of the mobility
(it does not allow this calculation in the case of intrinsic conductivity, because
it contains two unknown quantities: %, and u;). We shall iake into account,
therefore, only two special cases defined by the conditions, which can be

_easily fulfilled by measuring.
1. Small disintegration of the electric charge package

Let us assume that the following conditions are fulfilled

B A (33
BT ug 4’ v
e .Sw@m 1

e > (34)
T  4dug T

Then the relation (33) reduces to the form

x 35
o .@.aﬁ& ’ A v

which is identical to the basic relation of the Shockley-Haynes method. For
this reason we can take conditions (33) and (34) together with condition (10)
as criteria for the possibility of using the above mentioned method. We shall

tm

give them a more detailed form.
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According to relation (34) the external electric field must fulfil the inequality

2 [ kTug\1/2
.@e > — 2
” ] (36)
which transforms into the form
kT
B, > 2 (37)
€Tty
for minority carriers and into the form
kTp
p MW (38)

€

M:. a wouwmmoozmzogw with one type of conductivity. This last inequality gives

mme VAw 10 Wctw (V/m) for room temperature. It is a rather exacting condition
» € 8. 1or semiconductors with = (1016 _ 1018 -3 ,

I 168 o Po = ( ) em—3 there must be
If condition ( 34) is fulfilled, the inequality (37) has the form

kT Ug
Ey>——,
Al (39)
This oou.a.maob applied to the case of a semiconductor with only one type of
conductivity or the case of minority carriers, respectively (u, = uy), gives

£T 1
Ey>n—-—
v . o (40)
where 5 = 1, wv 3 for plane, line and point charge sources, respectively.
uwN & numerical calculation of condition (40) we shall find that by fulfilling
condition (33) inequality (40) is fulfilled too.
A more detailed analysis of condition 28 can be found, e. g., in the book

Mmbou..ma.mo.: of excess carriers, because later on, the internal electric field will
e m:.EEmro& due to the various internal processes. The integration of the
equation d&/dzx = e(p — Po) gives for this critical time the relation
0
1 el
BO) = B@) = — | e(p — po) dz = =2 (41)

€ €
d
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where N, is the number of all holes injected into the semiconductor. If the
contact at = d is sufficiently far from the point of injection, we can put
E(d) = 0. The critical value of the internal field intensity is £;(0). Then, if we
wish B, > E;, the following inequality must be fulfilled

&
Ny <—E,. (42)
€

It means that the critical number of the injected holes must be N, < 1015 for
the critical field intensity E = 104 V/em mentioned above. Evidently this
condition is not limiting excesively the choice of the intensity of the per-

turbation.

2. Strong disintegration of the electric charge package

Let us suppose that the condition reverse to condition (33) is valid, i. e. -

e qx? 1
mas, <. (43)
kT Ug 4

Condition (34) need not be fulfilled in this case. It can be easily shown that
the time of the maximum of the electric charge function is given by the

relation

=-—— (44)

where n = 1, 2, 3 for point, line and plane sources, respectively.

Using these relations one can calculate the value of diffuse ambipolar
mobility. In the case of one type conductivity or in the case of the minority
carriers this does not bring anything new in relation to the previous case,
but in the case of intrinsic conductivity relation (44) can be of great importance.
If conditions (10), (33) and (34) are fulfilled (the measurement in a »strong*
electric field), one can determine the value w,. By fulfilling conditions (10)
and (43) (the measurement in a rather ,,small‘ electric field) we obtain the
value ug. Then using relations (28) and (29) we can find the values of proper
mobilities of electrons and holes.

It is possible to find also another metod for the determination of the quantity
ug. According to relation (31) the ratio of two maximums of electric space
charge functions corresponding to two different points z; and z; at the same
time (t = z/E,u) is given by the relation

olx)  V(z) e aj—af
= = exp|——"—1.
olzz)  V(xa) kT dugt
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Then
kT .&w = &m

Ug = ——

e  4tIn[V(zs)/V(x)]

(45)

IV. CONCLUSION

A theoretical analysis of the problem of measurement of drift mobilities by
the pulse method has been presented in this paper. The processes causing
a disintegration of the electric charge package have been taken into account.
It has been found that some important conditions must be fulfilled to obtain
good results by the Shockley-Haynes method of measurement. It is necessary
to distinguish between the ,transport* and »»diffuse ambipolar mobility,
when semiconductor samples near the intrinsic type of conductivity are
measured. Methods for measuring both these mobilities are suggested. By
means of such a measurement one can calculate the values of proper mobilities
of electrons and holes.

REFERENCES

(1] Crove R. W., Journ. Appl. Phys. 27 (1956}, 156.
[2] Kepler R. G., Phys. Rev. 119 (1960), 1226.
[3] Le Blanc O. H., Journ. Chem. Phys. 33 (1960), 626.
[4] Brown F. C., Dart F. E., Phys. Rev. 108 (1957), 281.
[51 8 hockley W., Electrons and holes in semiconductors. Princeton 1950,
(6] Haynes J. R., Shockley W, Phys. Rev. 75 (1949), 691.
[7] Prince M., Phys. Rev. 92 (1953), 681.
[81 Many A, Harnik E., Gerlich D., Journ. Chem. Soc. 23 (1955), 1733.
[9] Le Blanc O. H., Journ. Chem. Phys. 35 (1961), 1275.
[10] Le Blanec O. H., Journ. Chem. Phys. 33 (1961), 626.
(11] Kearns D. R., Calvin M., Journ. Chem. Phys. 3¢ (1961); 2022.
[12] Gutman F. Lyons L. E, Organic Semiconductors. J. Wiley and Sons, Inc., New
York — London — Sydney 1967.
[13] Spear W. E., Noneryst. Solids 1 (1969), 197.
[14] Namﬁ%f&m% J., Meranie termofyzikdlnych velisin. Vydavatelstvo SAYV, Bratislava
1969.

London 1959, )

[16] Sze S. M., Physics of Semiconductor Devices. J. Wiley and sons, New York — London
— Sydney — Toronto 1969.

[17] Frank H., §ne jdar V., Halbleiter Bauelemente, Band 1. Akademie Verlag, Berlin
1964. ;

[18] Shockley W., Pearson G. L., Haynes J. R., Bell Syst. Tech. J. 28 (1949), 344.

[19] Spear W. E., Proc. Phys. Soc. B 70 (1957), 1139.

[20] Smith R. A., Semiconductors. University Press, Cambridge 1959.

Received February 24t 1971

206



