Fyz. Zas, SAV 21 (1971), No. 4

THE DETERMINATION OF THE EFFICIENCY
OF A THERMOCOUPLE WITH RESPECT
TO THE THOMSON EFFECT AND THE TEMPERATURE
DEPENDENCE OF THE ELECTRIC RESISTIVITY

BERNARD KONIG*, Bratislava

The efficiency of a thermoelectric couple with regard to the Thomson
effect and the temperature dependence of the electric resistivity is derived
by introducing a derived relation between the Sebeck and Peltier coefficient
and by linearization of the differential equation of heat transfer of the
thermocouple. These expressions for the efficiency show, besides the possi-
bility of finding the optimal conditions, that the up-to-date criterion — the
figure of merit z — is not unique.

L. ON THE DIFFERENTIAL EQUATION OF THE TEMPERATURE PROBLEM
OF A WORKING THERMOCOUPLE

The general expression for the efficiency of a thermocouple consisting
-of n and p arms of the lengths I, = I, = [, whose surface is perfectly insulated
is given in [9] or [5] by

R 4V N®+mm_m% +»mmnﬁ -1 1)
N = R4+ ? .u:@.as .cemau
z=l Tl
‘where R is the load resistance, AV the thermoelectric voltage of the couple?
" = ra + rp is the total resistance of the couple, @, is the Peltier heat absorbed
at the warm end of the couple, 4, and 4, are the thermal conductivities of the n
and p arms, respectively, 8, and S, are the crosssections areas of the arms,

d7 a7

—| and — are the temperature gradients in the » and p arms, respec-
dz | . dz |,

=l 2=l
tively, at the warm end (for = I). We assume that the temperature gradient
has the direction of the positive x coordinate. In order to substitute the
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expression for d7/dz in Eq. (1) it is necessary to find the analytical solution
of the differential equation for heat transfer in the arms. Now we investigate
the temperature field of a homogenous sample of the n type with a constant
crosssectional area § along the length of the sample under circumstances
which are similar to those of a working thermocouple. Therefore it will be
assumed that the device works at temperatures 7' for which 7y < T < T
and that the thermal insulation in the device is perfect. That is, it will be
assumed that there is no heat transfer between the heat resorvoirs, except
trough the thermoelectric arms #» and p and that there is no heat transfer
through the lateral surfaces of the arms. The heat-balance condition in an
arbitrary element of the sample of the length dx gives the corresponding
differential equation _ :

Qm m&%m& Swd A:vmmmﬂ 2
—\*— wdx = c(z)s(x —
g\ am) “ar e
where w is the thermal productivity of the sources, ¢(x) the specific heat,
s(x) the specific mass of the sample and ¢ the time. In a steady state when
dT/dz = 0, Eq. (2) becomes

d [ 4T

Eq. (3) with respect to Eq. (16) of w@mxﬂ. [1] for covalent semiconductors
(when r = 0) in the nondegenerate case for a homogenous sample can be
written .

m»mﬂu_:w\n.m%.*..w 0 @
w\ dz) 2 e’dx YT

where J is the density of the electric current and p the electric resistivity.
The differential equation (4) could be obtained directly by putting equal
to zero Eq. (16) from paper [1], which expresses the total heat released by the
electric current in an element of a nonhomogenous semiconductor in the case
of a temperature gradient, i. e. the equation

j2 d dr i d [r4-2 F 1
QHQI L P B + . :;::flicw_
Gel dx dz edz\r+1 Fep*) T T

where ¢, = 1fp, r is related to the mean free path by the expression [ =
= lo(T')er, Fr(p*) is the Fermi integral, u is the chemical potential and u* =
= u/kT" for the given conditions. As the mean free path for covalent semi-
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conductors I’ ~ 1/7', see [2] or [3], the expression of the electrical resistivity
Eq. (10) of paper [ 1] for the mentioned conditions can be written

or = o192, (5)

or in a general form
0, = 0T} (5a)

for 8, which does not depend on temperature, can be written

9 =—. (6)

d 2 a7 + 3 k dT .
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About a.rmw impossibility of finding an analytical solution of Eq. (7) when the
productivity of the sources is a function of temperature, deals paper [4].
The similar differential equation \

P e Rl el o P ®

has an exact solution only in the case when some special assumptions con-
cerning the forms of A(T), o(7") and (T are satisfied [5], i. e. Ag/v — 4 [zaT +
+ B, where 4 and B are arbitrary constants.

These assumptions are not fulfilled even in the case when 4 and 7z are constants
and o ~ Ts at s 5 |, Eq. (8), in which 7 is the Thomson coefficient, has for
d7'/dz an analytical solution in the form of a convergent series in the case when

% 7 and g are constant and further assumptions are satisfied. This solution
can be written [5]

a7 A8AT
A8 — ”@Iw%lwm;]:s&ﬁd@”'lu

x=1 [

1
9 =JiAT, q;= %NmWwJ T="T—1T.

The denominator of the expression for efficiency in Eq. (1), which means the
whole heat added to the warm junction per unit time, neglecting the further
terms wm the series which do not exceed 5 per cent of the foregoing terms can
be written @, 4 Q— 1q; — 39:. The uncomfortable term containing the
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Thomson heat is always neglected in calculations, which leads to introducing
the figure of merit z, although it follows from Eq. (17) of paper [1] that for
a nondegenerated gas the Thomson coefficient becomes 7 — 3k/2e = 129.3 x
X 1076 V/deg, that means it is a value comparable to «. At a concentration
optimal from the point of view of the maximum value of figure of merit z at
which dz/dn = 0 [6], we have a = 2kfe = 172 x 10-6 V/deg. By neglecting
the temperature dependence of the thermal conductivity at the given thermal
interval, Eq. (7) can be written

dz7 3k dT 0
' da? 2e dx T

Ts2=0. , (9)

Burstein found an analytical solution for d7/dz for a similar equation by
introducing a phenomenal Thomson coefficient in the case o(T) = go +
+ @17 [7]. Owing to the fact thas this solution contains a product of an expo-
nential and a hyperbolical function with relatively complicated arguments,
it would be impossible to find the optimal conditions [8]. We could obtain
in this case a useful form of the expression for the efficiency by H.ﬁaﬁsm T=0
and assuming the temperature independences of «, ¢ and 4. An approximate
solution in a concrete case could be found be means of a digital computer [9].

II. THE DETERMNANTION OF THE EFFICIENCY AND OPTIMAL CONDITIONS OF
A WORKING THERMOCOUPLE FOR THE PARTICULAR METHODS OF
LINEARIZATION OF EQ. (7).

1. Linearization in the case of constant gnand 4

In this case the differential equation (7) becomes
Lttt =——ta— 4 c=0, (10)

where the meaning of the constants ¢ and ¢ is given by this equation. The
solution of Eq. (10) is
¢

T(x) = Crexp (—ax) ——z 4 Cs,
a

where ) and Cs are constants of integration. With regard to the boundary
conditions 7'(0) = T and T(l) = 75, we have
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= a exp (—la) — — .
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Introducing the foregoing expression and using the relation j, = AV/(R + r)S,
we obtain ‘

a4V 3 k a4V on
_ —— (= ar Oy
a7 | 19 R4+rl2 ¢ R4S, 2 e AR X
dz |, T AV 1 1 k 3 3 bR+ O
z=1 exXpl —— == —— ]

(11)

and an analogous expression for the P arm. g, in Eq. (10) is defined by 7, =
= onl[Sa, where r, is the ohmic resistance of the % arm in a working thermo-
couple, i. e. in the case of a steady temperature field. Theoretically

I

1
On = r} o(T) dx ,

0

where T’ = T'(x) is the temperature course in the sample. In order to compare
the expression for the efficiency derived in this paper with the so far known
ones, containing the figure of merit #,, and the Peltier coefficient Tip_p 1S €X-
pressed by «, it is necessary to find an analogous relation between « and 7,_.

Regarding the mentioned circumstances and Eqgs. (12) and (18a) of paper [1]

we obtain the relation

T T, k
Tn—p = | — 3 MQHFMIM " Ts, (12)
where
Qp = —Sjmy_p. (13)

On substituting the expression from Egs. (11), (12) and (13) and putting
Bjr = m, Eq. (1) becomes

AT  m T, T, k1 1 2 e Ay0n
n=- 1—3f{—In— |- —— =008,
Ts m 41 AT T, e o T 3k «
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However, the examination of Eq. (14) shows that the efficiency depends even
in this most simple case on a, 4 and ¢ unlike in the so far known clasical expres-
sion for 7, [6], in which the figure of merit occurs. We will find the value of
% == Sp[Sp, which maximizes . This condition will be satisfied if the sum of the
terms in the parenthesis of Eq. (14) will be minimal. By setting the derivative
of this sum with respect to u equal to zero we obtain for % a complicated and
for a further application useless expression, which can be simplified and leads
to the same optimal values for « as in the clasical case putting

Anfn = Apoyp . (15)

The terms corresponding to the  and p arms in Eqs. (1) and (14) are equivalent,
therefore the condition (15) does not imply loss of generality when we consider
the influence of these material constants on the expression for the efficiency,
but makes this one easier to survey. Therefore the condition in (15) makes
it possible to compare the expression for efficency Eq. (14) with the classical
expression for 7., as in both cases the same value of  is optimal from the
standpoint of maximum values of both efficiencies. With regard to Eq. (15)
we obtain

L ) N ) (16)
Sp Angp v ep

<

as the solution of the foregoing condition, in order to maximize the value of the
efficiency expressed in Eq. (14). On substituting Eq. (16) and putting m = 1
which is in agreement with the condition of the maximal ouput, i. e. satisfies
the equation

d oAV _\_ 4 @vpm
wal\l&SE?tn:NI.
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Eq. (14) becomes

14T L3 %H_ T, . k .
—, == R — e | ¢ s =
e, dr T ) e
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The so far known expression of efficiency, which is in agreement with the
same circumstances but without the supplementary condition (15), in the
case when the Thomson heat is neglected becomes after some simplification

14T 14 2 1 4T~ (18)
e Ty 4Ty |
where the figure of merit z is given by z = «?[(An0,)2 + (Ap0p)*2]-2 in our
circumstances z = «?/49 and

LAT[ 8 J 147 -
= T e . ;3
e, Toa? 47T,

It can be seen that 1, Eq. (18) depends at the same temperature conditions
only on the figure of merit 2, so far has remained the criterion of the applica-
bility of a thermoelectric material. However, the examination of Eq. (17)
reveals that several different values of 7e=e, corTespond to a fixed z. From this
point of view Eq. (17) removes the nonuniqueness by using Eq. (18). The
expression in the square brackets of Eq. (17) can be with regard to the second
law of thermodynamics greater or equal to one. This can be assumed as a physi-
cal reason of validity of the relation between 4, o, o, T, and T>. From Xq. (18a)
this relation becomes
1 (81 1

—|———4T|> 0.
N«m Rm 4

2. Linearization by means of an exponential function
On substituting into the modified right-hand side of Eq. (9)
&7 4§ k34T 7% o

I /L) (19)
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T = Ty exp (vx), where Ty and v computed from the boundary conditions
Ty =T1, Tyy = T gives
X T 2
T="Te —Iln—1|, (20)
S F ) ..
which is the solution of a onedimensional heat transfer without inside sources
under the assumption that the thermal insulation is perfect and that 4 ~ T
[6]; then the linearized differential equation (19) can be written
2 j a7 12 i z T
Cr I e3P g (2T, (21)
dz? 41 ¢ 2 dx AT 1 7
By introducing the constants a, b, and ¢, we obtain d2T/dx? 4- a m%\m.w =
= —b exp (cx). The solution of Eq. (21) with regard to the boundary conditions

gives
ar i {cl—1)
——exp{cl—
dr w 2+ ac P b exp (cl)
— = - . (21a)
dz s exp (al) — 1 c+a

2=l

In order to simplify further calculation with regard to g,,/T%, = 3, we compute
T':n corresponding to pin = ga from equation
1 1

1 Qin 1.
= — = — T(x)]) dx . 22
on =~ oT) dz 1 [T(=)] (22)

0 [

On substituting Eq. (20) for T into Eq. (22) we have
?

1 gin . x T Ti\* 1 (T3Th)s — 1
= == —Iln—)de =gip|—) ———— . (23)
On = LT T{exp mN bum Qin Tea) s In(ToTs)
0 .

From Eq. (238) Ty, corresponding t0 gin = g, is given by

1 (TofTy)e — 1 Tuse
LR Tl k. ek il (24)
T =T | In (T4/T1)

The value of 7', can be determined by an experimentally found value of Tn
from the equation

Sa _ Gin

On =Ty —

1o,

T:

w

199



which implies

S, T
T8 =y, — (24a)
l Oin

where g;,, is the electric resistivity of the n sample at the temperature T, 5o(T')
is maximized with respect to Sp/Spatm =1, T, =T, 2000 = Appp in a similar
way if Eq. (16) is satisfied. Under these circumstances we obtain .

14T T, T, k1
oy = ———(1—3|—Ihnh— — 1}—— —
2 T, AT 7 e o
1 [To\¢ T: AT 3 k]2
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Fu%wwmm 4 T T; 7, Ao asﬁ
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This expression for the efficiency of a thermocouple is different from the one
known so far for #, in the following points:

1. The Thomson heat has not been neglected.

2. The temperasure dependence of the electric resistivity has not been
neglected.

3. The temperature dependence of the thermal condtctivity was taken into
account in a special case.

4. At the given temperature conditions 7e(ry is not a function of the figure
of merit z but depends separately on « and Zg, mo%moﬁéq 80 that ny) =
=n{T1,Ts, a, 4, ¢), unlike 7z = 9(T1, T2, z). From the form of the figure
of merit = = o2/4lp — i20%i24j0 — afl42:0; it is seen that the same 7. but
in general different values of 7e(ry corresponds to an arbitrary i. Eq. (25) for
Necry — analogical as in the foregoing case Eq. (17) — shows the non-unique-
ness of the defermination of the efficiency by means of Eq. (18) or Eq. (18a)
for #,.

200

3. The linearization by means of T =17, -+ % x
This linearization gives a differential equation, which has an analytical
solution (by the method of variation of constants) only for the integer s.
The expression for the efficiency is maximized by the same optimal conditions.
as in the foregoing cases and has the form (T, T2, a, afAp), but is more com-
plicated already at s = 2 than in the foregoing cases.

4. The comparison of the values of the single efficiencies and the analysis
of the applicability of the expression for 7z

In order to compare the factors at $4T|T in the different expressions of
efficiencies 7., o_on and 747 according to Eqs. (18a), (17) and (25), i. e. the
values 0 = n2T/AT (at T; = 300° K and T’y = 400° K), a table (see Tab. 1)
of those factors was calculated. The places in the table with the same values
of figure of merit 2 are indicated with the same i. There are further in the table.
the values of 1 = an + ap = 4.7 X 106V deg-1 and (ig); = 10-5 V2 deg-1.
The meaning of the particular values in Table ! is indicated in right upwards.

Table 1
[Vdeg1] |
- 0w A | w@pr | w@pe | ey a1(6)172
o
[VZdeg—1]
4) (6) (7) (8) (z)
. 0.2193 0.298 0.368 0.466 B
{2k 0.2255 | 0.3064 0.373 0.480 B oon
0.210 0.2814 0.338 0.419 B oty
(@) (4) SRR,
L5 0.156 0.2193 0.272 0.368
S 0.1596 0.279 0.366
_ 0.152 0.257 0.303
! L (3) 4) (6) @)
27 0.122 0.173 0.2193 0.298 0.466
Hoh 0.1236 | 0.175 0.302 | 0.474
0.1193 0.1668 0.277 0.372
i
(1) (2) (4) (3)
- 0.122 0.156 0.2193 0.272
(hoh 0.1215 0.1576 0.2215 0271
“ 0.1181 0.1508 0.255 |
(3) (4)
) 0.173 0.2193
4(2eh 0.1738 0.220
0.1653 0.207 |




The agreement of the values 7. — Eq. (18a) and 7,_0, — Eq. (17)can be verified

o k
In the case of small values of the exponent 3 mr AT —in Eq. (17); in the present
o e
o k
case they are of the order of hundredths, where the exp 3 ~| AT —) =
0 e

x k . .
=14+ wm AT fmn if the further terms can be neglected. By neglecting the diffe-
rence of the terms 3[(7:/AT) In (Te/T1) — 1] kjex and 2 AT/T,, which are smaller
by two orders than the other terms, the sum of the last two terms in the
brackets of Eq. (17) becomes 849/T>a?, which is in agreement with Eq. (18a).
The expression 7 can in a similar way be transferred to the expression
for 7,.

The criterion of applicability of Eq. (18a) for 7z is the possibility transferring
Eq. (17) or Eq. (25) to the form of Eq. (18a) in the foregoing way. The values
of the corresponding efficiencies are different in those circumstances in which
the foregoing transfer is not possible.
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