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A CLASS OF DISTRIBUTIONS RELATED
TO EXTRAPOLATION OF ANALYTIC FUNCTIONS

ANNA NOGOVA,* JAN PISUT,** PETER PRESNAJDER,** Bratislava

Let D be a set of functions analytic in a region H bounded by a curve y.
‘We introduce a set D’ of distributions defined on boundary values of functions
from D. If I' is an arc on the boundary v, T' € D’ and f € D, we can express
T[f] as a functional defined only on f(z) reduced to I': T[f] = Lim .—?Auv f(z)dz,

n»o I
where {f,(z)} are successive approximations to & known function or to

a sequence of known functions. This is related to questions of uniqueness of
anslytic functions. Analytic extrapolation is thus reduced to approximation
of functions. Since T,[f] = f(a), (@ € H) belongs to D’ we can construct in this
way effective methods of analytic extrapolation of e. g. from factors and
scattering amplitudes in particle physics.

Possible applications of distributions D’ to theories of singular 5@@@_.3
equations and of biorthogonal series are also mentioned. In a general plane
distributions D’ link together theorems on uniqueness of analytic functions
with theorems on approximations by analytic functions.

I. INTRODUCTION

From factors and scattering amplitudes in particle physics are analytic
functions of relevant variables (energy, cosine of the scattering angle, momen-
tum transfer etc.). Two typical situations are displayed in Figs. la and 1b,
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Fig. 1a. A typical analytic structure of the ~ Fig. 1b. A typical analytic structure of
real (or imaginary) part of a scattering a scattering amplitude as a function of
amplitude as a function of the scattering  energy squared at a fixed value of mormen-
angle. Experimentally accessible region @  tum transfer. Experimental region is de-
is denoted by crosses. noted by crosses.
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where regions with experimental data available are denoted by crosses. To
obtain a scattering amplitude outside the experimental region one is faced
with the problem of analytic extrapolation. A similar situation can also be
encountered in other problems where quantities in question are analytic
functions. In cases shown in Figs. 1a and 1b the prcblem can be transformed
{1—5] by a conformal mapping to an extrapolation off a part of the boundary
of simply or doubly connected regions shown in Figs. 2a and 2b, respectively.
A method for analytic extrapolation in situations in Figs. 2a and 2b was
recently proposed in [1—3]t.
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Fig. 2a. A conformal mapping of the ana-  Fig. 2b. A conformal mipping of the ana-
lyticity region in Fig. la, suitable for lyticity region in Fig. 1b, sait able for
analytic extrapolations. Before the map- analyvtic extrapolations.

ping an additional cut along G was mase.

The purpose of the present paper is to provide a general mathematical
basis of extrapolations like those in [1-3].

To indicate the main idea let us consider the simple situation shown in
Fig. 2b.

Let f(z) and g(z) be analytic in H: z < 1 and continuous in H. The boundary
of H is denoted as C and consists of the ,,unknown‘‘ part I'" and. the ,.eXperi-
mental part* I on which f(z) is given. Under these conditions we can write:

1 1
f@) =~ | f&)|—— = ge)|az,  ach. 8y
2nmi 2 —a
rer
According to [6] there exists a series of polynomials {g,(z)} converging uni-
formly to (z — a)~! on I". Hence we obtain from (1):

1
fla) = lim —— fz)[(2' — @)t — gu(z'))2, @
n-»00 Nﬂn—
r
! The method used in ,T —3] is based in fact on E-distributions described below. An
alternative method is based on polynomial expansions. It has recently been improved

in important papers by C utkosky and Deo [4] and by Ciulli [5].
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expressing thus f(a) in terms of f(z) on the »experimental‘‘ part of the boundary.
If we were interested in a linear combinatios of derivatives of f(z) in a point
a € H, we could proceed in the same way to obtain

N

nso 2701 AN~ — Q\va.z

N
1 bik!
bef®(a) = lim — | f(z') M — ga(2) | dz2'. (3)
r 0

o

Here the sequence {g,(z)} uniformly approximates the first term in braces
in eq. (3).

* Proceeding to a further generalization, we can consider a class of functionals
(hereafter referred to as E-distributions) defined on bcundary values of functions
analytic in H. In section 2 we shall show that (under suitable restrinctions
on f(z) a deneral functional 7' of this type is always representable by a sequence
of continuous functions {r,(z)} defined on C and such that

T(f] = lim | f(z)ra(2)dz. (4)
nso C

According to the theorem by Walsh [6], there exists a sequence of polynomials

{9x(2)} «n does not denote the order of the polynomial) such that

[Ta(2) — galz)] < L for any n and ze 1. (5)
n
Hence
Tlf] = Tyl f] = lim [ f@)[ta(z) — gn(=)}dz. (6)
. n->c0 I

Equation (6) shows that any functional 7' sro%,m:wwog is the whole boundary
C is equal to a functional 7(I") whose support is only I'. This is not quite sur-
prising since a function analytic in H is uniquely determined by its values on
I'. Note that eq. (6) and its derivation shows also a close connection between
approximations by analytic functions and theorems on uniqueness of analytic
functions.

The derivation of eq. (6) is based on two points:

i) a functional defined on boundary values of analytic functions (an £-distri-
bution) can be expressed in the form of eq. (4). Conditions under which this
theorem is valid are given together with the proof in section 2.

ii) any function continuous on an arc I" can be approximated uniformly to
any desired accuracy by polynomials. The relevant theorem by Walsh [6]
and its generalization by Mergelyan [7] are quoted in detail in section 2.

A particular of case eq. (2), which is perhaps most important for practical
applications, depends on item ii) and on



iii) a function f(z) can be cxpressed in terms of its Cauchy integral over the
boundary of the analyticity region. Most general results in this respect -are
A.m:m to Privaloff [8] and are described together with simple generalizations
in sec. 3.

The rest of the paper is organized as follows: section 2 is devoted to E-distri-
butions in the case when analyticity region of basic functions is the unit circle.
In sec. 3 we discuss analytic extrapolations (like that in eq. (2)) in multiply
connected regions and with less restrinctions on boundary values of extrapola-
ted functions. In sections 4 and 5 a possibility to use E-distributions in theories
of singular integral equations and of biorthogonal series is briefily mentioned.
Conclusions and comments are given in section 6.

I1. E-DISTRIBUTIONS IN A CASE OF THE UNIT CIRCLE

In the present section we shall define E-distributions as linear continuous
functionals on boundary values of analytic functions. We consider here expli-
citely only the case of the unit circle. The reasoning is also valid (with unim-
Pportant modifications) for simply connected domains which can be conformally
mapped into the unit circle. A part of the procedure is almost identical to the
one used in the theory of distributions? on functions of the real variable. In
such places we omit any comments or details. We define first the space D of
basic functions as follows:

Definition 1: 4 function f(z) € D if f(2) is analytic in the interior of the unit
circle K: |2| < 1, continuous in K- |2} < 1, and all the derivatives of the function
J(z) exist on the unit circle C- 2| = 1 and are finite.

If a linear combination of functions is defined in the usual way, the space D
becomes a vector space. .

Umwmaa.mo.z 2: A sequence {f}, f; € D is said to converge to f € D if any sequence
of derivatives { TP} converges uniformly to f® for z € C: [z| = 1. The convergence
is denoted as f; = I

Definition 3: An E-distribution, 8 @ linear continuous (in the sense of Def. 2)
JSunctional on D. The set of E-distributions is denoted as D).

Definition 4: The p-th derivate of T € D' is defined by the relation
TO[f] = (—1)eTfo)]. L m

Our further aim is to show that any 7' e D’ can be represented in the form (4).
To start with we introduce some notation. Let Q: [z] > 1 denote the complement

2 A detailed exposition of the subject may be found in [9 — 11].
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of K, and K,(2) = (2ri)~Y(a — z)~! is the Cauchy kernel. If a € Q, then K,(z) &
€ D. The function .

T(a) = T[Ka),

is said to be the Cauchy representation of a distribution T e D’. Tt is easy
to show that 7'(a) is analytic in @, and that

N dns ni(—1)»
T™a) = —T@T|-—————|, aeq.
dan ari(a — z)ntl

The desired theorem is now obtained in the following form:
Theorem 1: Let T € D', fe D then
T[f] = lim | T(xfr)f(x)dz.

r»1C
The proof of the ,,central” Theorem 1 is based on two lemmas. In their
formulation we shall use auxiliary functions f,(z) defined as follows: Let feD,
then fr(z) = rf(rz), where 0 < r < 1. Noting that f,(z) is defined and analytic

1
for |z} < — we can write
r

1 r
Jriz) =— daf(rz) = —,E&VNQ\:?E&“ (8)
2m xT—z
ciin ¢
where Cyr) is the circle with radius (1/r) and K (z/r(2) is given by the previous
notation for the Cauchy kernel. Let Ix(z) be the integral sum corresponding
to the last expression in eq. (8)

N
In(z) = 3 ) K g2} (9)

The function In(z) € D and it is easy to prove that I ~(2) = fr(2). The proof
which is omitted for its simplicity rests on the fact that the Cauchy kernel
K n(2), 0 <r < 1, Jwg| = 1, has no singularities in K. Thus we have:

Lemma 1: Let fe D and In(z) be given by eq. (9). Then In(z) = fi(2), ze K,

fr(z) =ztf(rz) and 0 < r < 1.
The following Lemma 2 shows that the functions Jr(z) converge (in the sense

of definition 2) to f(z).
Lemma 2: Let fe D and fi(2) = tf(rz), 0 <r < 1. Then fo(z) = £(z) for

r—>1—,
Proof: By the definition f,(z) € D. We have therefore only to prove that the
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p-th derivate of Jr(2) converges uniformly to f®(z) for ze C and for anv
natural p. i )

This follows from the inequality:
I =@ = o sf @) — for) + prifos) — o) <
S PP B(rz) — )| 4 | fOR)(1 — pon),

Recalling now that Em.mg fP(2)| = M, < oo and tha S®(2) is uniformly conti-
2€,

nuous on K we ca that f® i i
the proct n see that /) converges uniformly to £ on ¢, This completes
dﬁ.:m Lemma 1 and 2 we are now in a position to give the proof of Theorem
1: Using the definition of T(z) we have:
::m q.‘ Tzfr)f(x)dz = lim [ TIK oy (2)1f (2)de. (10)
- r»1 €
.H: eq. (10) the distribution 7' »»8cts* only on the variable z. The second integral
in eq. (10) may be rewritten by using integral sums (9) such as

R X~ )
| T[K ¢(2)1f (2)de = lim 2. UK (@) flog) Ay =

C Now 1

= B PLS K (o)f(en) ] = lim T[Iy(z)). (11)
>0 1 Now

According to Lemma 2 7 ~(2) = fr(z) and since 7' is a continuous functional
‘we have

%E Tln(=)] = Tlim In2)] = T[f(2)].
>0 Now
In Lemma 2 we have shown that fi(z) = f(z) f
) or r— 1— and therefore
wEw T[f(2)] = T[f]. This shows finally that '

:w_ QH S\QE%HQS as
and completes the proof. The proof was a rather cumbersome one. Note
ros.wma.mﬁ that simple proofs of Theroem 1 known from the theory of &mﬁ.m.u
Uzﬁcsm on real functions [12, 13] cannot be used here, since the B-distribution
T is defined only on boundary values of analytic functions. This excludes
some steps used in [12, 13].

In .25 Introduction we have indicated how any E-distribution whose sup-
port is the whole boundary can be expressed in a form of an E-distribution
érwmo support is an arc on the boundary. In fact this property of E-distri-
butions may be formulated in a more general way. As a hint one can use the
drmowos on the determination of an analytic function by its boundary values:
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Theorem 2 (Privaloff [8], chapt. I, § 6). Let f(z) be analytic and bounded
in K: |2| < 1. Let further the radial boundary values of f(z) be equal to zero on
a set of non zero measure on the unit circle |2| = 1. Then f(z) = 0 in K.

Paraphrasing the Privaloff theorem one may say that a bounded analytic
function is uniquely defined by its boundary values on a set of non zero measure.

A natural conjecture arising from the Privaloff theorem is that any E-distri-
bution on the unit circle can be expressed as an E-distribution whose support
is an arbitrary non zero measure set on the unit circle. This is, with an additional
restriction, really true.

Let I' be a non zero measure set on C: |z| = 1 such that theset £ — ¢ — I"
is closed. Then the set E is closed, bounded, has no internal points and does
not separate the plane. The function 7(z/r) is continuous for x € E. Conditions
for the applicability of the Mergelyan theorem are fulfilled.

Theorem 3 (Mergelyan [7))3. If E is a closed, bounded sef not separating
the plane, and if f(z) is continuous on E and analytic in the interior points of B,
then f(z) can be uniformly approximated on E as closely as desired by polyno-
mials. According to the Mergelyan theorem there exist polynomials Py(z)
(r does not denote the degree) such that

(T(zfr) — Prix)] < 1 —1, 2€E, O<r<l. (13)

If fe D, then %.\A&vmﬁ&vma = 0 and we obtain for any 7' e D":
¢

T[f]=lim [ [T(afr) — Pr()f(z)dz = lim [ [P(z}r) — Pua)]f(@)dz. (14)
121- C r>l- T
In deriving eq. (14) we have used eqs. (12, 13) and the boundedness of flx)
on (. Eq. (14) is the desired expression of an E-distribution 7" as a functional
whose support is the set 5. E-distributions T4[f] = f(a), a e K (the point a
may lie also on the boundary) can also be expressed in the form of eq. (12).
Ifae K, we have Ta(z) = (2ri)L (z — a) and if a € C, we can write:

fla) = |WI. lim | — flz)d=.

27 r1-

8 The Me rgelyan theorem is the most general result on approximation of functions
by polynom ials in the complex plane. The previous and less general form of the theorem
is due to W alsh [6]. The Walsh theorem says that a function continuous on & Jordan
arc of the fi nite complex plane can be uniformly approximated to any desired accuracy

by polynomials.
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Proceeding as above we can construct a serie of polynomials Py(z) such that
z -1

PR B A&:_Aalﬁwonmbu\mmﬁlﬁmummg
1 1
fla) = Iwﬂ_xw.mm P Pr(z) | flz)da. (15)
. ——a
”
r

To extrapolate to a point on the boundary we can proceed also in a different
way. Denoting g — exp(ify) and constructing a series of functions

1 1 — cos(argz — 9
la,o(z) =~ —= exp
izo _\Ma o?
we easily obtain
f@) =lim [tosG)fz)dz,  aeo. (16)
o0 C

Since f; 5 are continuous on C one may again use the preceding procedure
to reexpress f(a) in terms of boundary values of f(z) over I'. A similar approach
was used in [2].

III. EXTRAPOLATION OF AN ANALYTIC FUNCTION OFF A PART
OF THE BOUNDARY OF ANALYTICITY REGION IN A MORE
GENERAL CASE

In the present section we shall extend some of the considerations of section
2 to more general cases. Arguments of sec. 2 were essentially based on the
central Theorem 1 and on the Mergelyan theorem. The Mergelyan theorem is
easily applicable also to multiply connected regions, while the extension of
Theorem 1 to such situations remains only a conjecture (we were unable to
prove such a generalization). We shall therefore concentrate here only on the
practically important case of an extrapolation of a function off a part of
the boundary. We shall first generalize eq. (15) to the most general class of
functions analytic in a simply connected region and later on we shall genera-
lize eq. (15) to multiply connected regions.

A basis point in the derivation of eq. (15) was item iii) mentioned in the
Introduction.

The most general class of functions analytic in a simply connected region
@ and representable in terms of their Cauchy integral over the boundary 4
was found by Privaloff [8]. The class is denoted as E1 and defined as follows:
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Definition 5 (Privaloff [8]: 4 Junction fe B, if f(z ) is analytic in a simply
connected region G bounded by a rectifiable curve y and there exists g constant
C and a sequence of curves {yx}, yx < G, topologically converging to y and such.
that A_. 1f(2)|ldz] < C for any yx.

y:¢

>Mao~.&=m to [8] for any f € E; there exist non tangential boundary values
of f(z) on y (except perhaps for a zero measure set) and f(z) is representable by
a Cauchy integral over the boundary y.

For any f € E1 we can therefore apply the procedure of section 2 and express.
S(a) for any a € @ in terms of boundary values on a part of y. The result is
then given by eq. (2).

Next we shall discuss the generalization of eq. (15) to multiply connected.

regions.
Let Gy, Go, ... G, be simply connected disjoint regions bounded by rectifiable.
CUrves y1, yz, ..., ya. Let G1, Gs, ..., @, lie in the interior of a region Gy bounded

by a rectifiable curve yo. A multiply connected region g is then defined as.
n n

9 = Go— nl|J G; and the boundary of g is equal to U 7/ (see Fig. 3). An.
1 ]

analogon [£1] of the space E is then defined by.

Definition 6 4 function f(2) € [E1] if f(z) is analylic in g and there exist
a constant C and (n + 1) sequences of simple curves {PKi}g1,5=0,1....n
such that {yKj)q_ , converges topologically to y; for j =0, 1,...,n, and that

[ilftalidz] <. . .
Then there exist simply connected regions H; and Hj bonded by rectifiable.

curves Ly and Ly such that H, U H, < 9, H1 U Hy = g (see Fig. 3). If f(z)
4

Gl

Fig. 3.

€[E1] in ¢, then f(z) e By in the regions H; and H,. According to [8] there
exist non tangential boundary values of f(z) on y < L, U L, (except perhaps
for a zero measure set). After a simple reasoning one also proves that f(z) can
by represented by its Cauchy integral over its non tangential boundary values
on y. Thus for any a € g the following holds
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1 fe)
=) e

dz. (17)

Let L be a non zero measure set on y such that the set y — L is clnsed. Let
\ v n

a set F be defined as: £ = 5 U E;, where E; = L N y; if L and y; are not
0

disjoint. The situation is shown in Fig. 4. We hawe assumed there that y,
and L are not disjeint. If this is not the case, we can always perform (prior
to extrapelation) a conformal mapping so that the new yo is not disjoint
with L. The set E is bounded, closed and does not separate the complex plane.
The fanction (z — a)-1 is continuous in £ and analytic in the interior of .
Sinec y — Le K, the Mergelyan theorem shows that there exists a set of

7

polynomials P,(z) such that

Fig. 4.
1
(& — a)™t — Pyu(x)| <-—foraeg,zecy — L. (18)
n
Using eq. (18) and proceeding as above we obtain
. 1
fla) =lim — —,\A&v [(x —a)t — Pu(x)]dx. (19)
ns0 271 g

i
The eq. {19) is again a constructive (at least in principle) paraphrase of the
fact that an analytic function is uniquely given by its values on a part of the
boundary of the analyticity region.

Finally let us note that we have so far used the Mergelyan theorem to show
that there exists a sequence of polynomials approximating uniformly a given
function or a given sequence of functions. This is actually more than one
needs. For instance, in eqs. (18, 19) the functions P,(z) need only to be analytic
and bounded in g (so that f P, belongs to £1). Sometimes [3] it appears suitable
to start with constructing the functions corresponding to [ — a)t — Py]
in egs. (18, 19) directly, instead of constructing polynomial approximations
to (x — a)L.
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IV. POSSIBLE APPLICATION OF E-DISTRIBUTIONS TO SINGULAR
INTEGRAL EQUATIONS

Here we shall show that the problem of analytic extrapolation, solved above
in terms of E-distributions is equivalent to a particular class of singular integral
equations.

Let @(z) be a function analytic in a region 8+ bounded by a simple smooth
curve y consisting of two ares I and K (see Fig. 5a). Let @(z) be continnous
in S+and let its bundary values on L and K be denoted as o(t) and yp(t), respecti-
vely. The complement of S+ with respect to the whole complex plane is denoted
as S~ According to ref. [14] § 29 we have

L___ S
B

K
Fig. 5a. A
t)yde t)de
Qo) = ple)de + E = 0 for any deS-. (20)
t— & t—2o

L K

If z € L, we can perform the limit & - z to obtain

1 t)ds t)ydt
p(z) + — P Milvl.h — E‘ for ze L,z -£ A, B. (21)
in t— 2z I —z
L F /e

where P denotes the principal value.

On the other hand, eq. (21) implies that the function defined by eq. (20)
(by construction Q(9) is analytic in 8- has zero boundary values on L and is
consequently identical equal to zero in S§-. This in twrn implies that e(t)
on L and y(t) on K are boundary values of the function analytic in S+.

To find a solution ¢(i) of eq. (21) is therefore equivalent to an analytic
extrapolation (through §+) of y(¢) on K to ¢(t) on L. The solution of this problem
in terms of E-distributions was given in sections 2 and 3. Changing the role
of 8+ and §- (as shown in Fig. 5b) while keeping the same orientation of
and K, leads in the same way to the equation

1 tyde 1 t)de
— g+ —p | L0 L

i t —z it ] t—z
L E

™

eL. (22)
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In this case the functions @(t) and y(t) are boundary values of a function D(z)
analytic in S+ of Fig. 5b.
The egs. (31 and 32) are very special cases of equations:

1 p(t)dt
o)+ —P | ——=uft), zeL. (23)
1T t—z
5
Note, however, that egs. (23) are just those singular integral equations which
cannot be solved by a reduction to the non homogenous Riemann-Hilbert
mapping problem (ref. [(14] § 96). ,
.“.E_mwo arises naturally the conjecture that perhaps also the general type
of irregular integral equations (23) has something to do with analytic extra-
polations and E-distributions.

L st

B

A K

Fig. 5b.

V. E-DISTRIBUTIONS AND BIORTHOGONAL SERIES

A suitable set of E-distributions can represent a biorthogonal system to
a set of functions which otherwise does not have its biorthogonal system.

Consider the set of functions {rer}Tonanarcl: 2| = 1 and 0 < « <argz <
< f < 2x. The system {ve"} is linearly independent on I". In fact if Svanzn =0
for any z e I, then Gn =0 for n =0, 1, ..., N. This is easily proved if one
realizes that >4 anzn defines an entire function which is then equal on the arc I".

Within a set of functions continuous on I there does not exist a system
{n}7 biorthogonal to {z*}. If there were such a system, the following would
hold (we use the simplest weight 1|dz] — dz/(iz):

[10zlox(z)en = 8uy m=10,1,2,.. K =0,1, 2, ... (24)
v A
This is however impossible. Consider the function @olz. It is continuous on I”

and the theorem by Walsh [6] applies. Consequently to any positive e there
exists a polynomial P(z) such that

lpo(z) — 2P(2)] <&  for 2l =1, zerl (25)
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Using now egs. (22, 24) we obtain
[1d2llgo(=)]) < & dzllgo(z)]. . (26)
r r

Since eq. (26) holds true for any positive ¢, it follows that gg(z) = 0 on I'. This
contradicts eq. (21) taken for n = k — 0 and completes the proof.

A system biorthogonal to {z*}7 is easily constructed in terms of E-distri-
butions.

Let us introduce a set of functionals 7, defined on any polynomial P(z) by
the relation

o1 fdzf1
(P) =lim — | — |— — #Qn,e(2) | P(2), (27)
-0 2mi | 2z [en
r
4&.,6.3. @n.e is a polynomial whic satisfies the inequality? [z—(s+D) _ @n.e(2)] < ¢
on I'. The existence of @, is again secured by the Walsh theorem [6].
It is now easy to prove that

Tn [2K] = dn,k forn, K =0,1, ..., (28)

hence the system of functional {Ta} is biorthogonal to {77
Note that z, are just the E-distributions which assign to any function f(z) € D
(see section 2) its derivative in the origin multiplied by (n!)-1:

1
walf] = — f(0).
ni

VI. COMMENTS AND CONCLUSIONS

The basic difference between E-distributions and distributions acting on
functions of a real variable lies in the concept of support. A funection of a real
variable has, loosely speaking, to be defined locally. An analytic function is
determined uniquely by its values on any arc I on the boundary of the analy-
ticity region. K-distributions share this property and any E-distribution can
be expressed so that I"is its support. .

The concept of E-distribution shows also a close connection between the-
orems about the unique determination of analytic functions and theorems
about approximations of functions by analytic functions. As a trivial example
one can for instance prove — by using the Walsh theorem [6} and the pro-
cedure outlined above — that an analytic function is uniquely given by its

* The set I is given as I : {2} = 1, z ¢ I.
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values over an arc on the boundary of the analyticity region. As a non trivial
example one could perhaps use the Mergelyan theorem [7] and the procedure
of section 3 to prove general theorems about the unique determination of an
analytic function by its boundary values.

In practical applications E-distributions can be useful when a constructive
prescription for an extrapolation off a part of a boundary is needed. Attempts
in this direction were done in [1—3]. Let us recall briefly the problems arising
in such attempts on practical extrapolationss. Within the present approach
an extrapolated quantity is in general given in the following form:

4 = lim | an(2)f(z)dz + lim an(2)f(z)dz = lim | an(z)f(z)dz. (29)
r b 2 r

Here {as(2)} is a sequence of functions (uniformly converging to zerc on
y — I'), I' is the arc we extrapolate off, y is the whole boundary and f(z) onl"
represents the experimental data. Sequences {a,(z)} show increasing oscillation
and increase in the max lan(z)| on I' with increasing «. This is quite natural
since a function f(z) should be , seized well by {ax(z)} before being extrapolated
well. Experimental data are always subject to experimental errors and then
instabilities in the determination of 4 develop. They forbid to take the limit
7 —> o0 in (29). The best that can then be done is to find an %y which minima-
lizes the error in the determination of 4 and truncate the limiting procedure
in (29) on that ng. Note that for ng <C oo the arc (y — I') on which there are
no experimental data contributing to 4. The evaluation of ng then requires
some modest a priori information about f@)on (y — IN). )

The sequence {2x(2)} in eq. (29) is generally not given in a unique way
(even if the definition of 4 and arc I” are given). Then there arises a natural
question of finding an optimal sequence {@a(z)s. This might practically amount
to finding a sequence with minimal oscillations or with the slowest increase’
of the max |a,(z)|. The understanding of these questions would improve the
reliability of practical extrapolation methods. “Tr

The authors would like to thank Dr. J. Fischer (Prague) for stimulating
discussions and correspondence. One of the authors (J. P.) is indebted ao
Professor R. E. Cutkosky (Pitsburg and Cambridge) for valuable conver-
sations.

® The most complicated problems in analytic extrapolations are connected with the
stability of extrapolated quantities and are ccmmon to all extrapolation procedures
([1—35]). ,
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