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The paper .
1 deals with th R
et Gonstont m.mvmo&u?o: of sound and wi
P Essﬁwmw”@ to the interaction of the sound s:mﬂwuzwm change of
; semiconductors wit, - / nduction elec-
energy. The interaction of the sound sw h nonspherical surfaces of constant

duced by means of (tensor) ith the conduction electrons is intro-

Tityp defor, i .
quilibrium . mation potent
The SEwsamM toon B is. decribied by ?Mwoﬁ%“ constants. The none-
. term 1s approximated by means of SMMB awm_:mﬁow
N relaxatio;

the intravalle .
: y and inte o
potential by rvalley transitions. The screenin.

t equation.
n times for

the condu tion e trons i 0. B ation
C n electrons s considered. too. The propa, ]
’ g

of the acoustic i y

! Vave 1s .mw.mem.:Uva.

,“ o A er >d by the wave OQEMFGMONH in which the inter
act C~.~ with _:0— ®~®QnﬁOH~w is introduced. The m®-®~.m.~ WO“Z.ZHMNM for :n@ m. U.
sorption coefficiont an the ch. t !

) . LA a1ges of the elastic co P
£ mm. . t d . nstants are a mu:.@ﬁ._.

n a 3 ses of the w:m: and law sound m&@@ﬁmzamw i

to Ge and S ases t W s are discussed.

I. INTRODUCTION

Information o
n electron-phonon i ;
measurements of t . n interaction can be obtai
s, e, e oﬂe M%mo%nSS coefficient and changes of the M““o S
Kind wore saiod out e o_wmﬁdb (hole) concentration. wxwmwmam:emocwaﬂwﬁ
many-valley models of M% St and Ge [1—4] and interpreted in nﬁ,Emo f ar_m
dealing with the det 9 ENLCLE surfaces [1-—7]. There are also m o
of the elastic oocaapzﬂmo ME Mwmgob of the absorption coefficient @Bﬂdﬁ%“@mum
Wo give in this 8 1 the one-valley models (see [7] and nges
s e £ i
of the elastic GWMMM, M denivation of the absorption oowmmomowm MMWM Mwm ewm o
valley mwswoosmcgowm MMM.@ ao. the electron-phonon interaction in aMmohHMMm
bransitions. O .Em into account both intervall . -
i which, s :_M. E@nvom _m. based on the wave equation mO@WnMBQ S
eraction with electrons by means of the def N mm“.Em WEHE,
eformation poten-
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[9], who determined

tials 18 introduced and in accordance with Mertsching
we described non-

the acoustoelectric effect in Em:%ﬁy:o% semiconductors,
equilibrium electron gas by the Boltzmann equation. The general formulae
for the absorption coefficient and the elastic constants, which are derived
in the paper are then applied to n-Ge and n-Si. We discuss the cases of the
high (gl« > 1) and the low frequencies (qlsx <€ 1) In the case of the high fre-

quencies we distinguish two cases: & strong and a weak screening of the inter-

action potentials. In the case of the low frequencies we consider only the strong

screening.
Ii. FORMULATION OF THE PROBLEM

h a crystal charac-

stic wave propagating throug
t a moment ¢ has

We shall consider an acou
ctor u, which in a point r and a

terized by the displacement ve
the form
u(r, t) = uo exp [i{wf — 9 Nl (1)

e ug is the amplitude of the sound, w is the angular frequency and q is

wher
ﬁ_rmép<o<@oao~..wdaro approximation of the elastic continuum small defor-

mations are described by the tensor
1 [ouy Jug
wy =—\— T} (2)
2 \ox; ox;

tion vector and w; are components of the

o deformation, the energies of the elec-
ndence of the energy of the electrons,
ctivity band, can be expressed by

where x; are components of the posi
displacement vector (1). Because of th
trons in the crystal are changed. The depe
which are near the bottom of the condu
means of the deformation potential

B(k) = (k) + OFuy = Bolk) + Ve 3)
e undeformed crystal, o is
k is the wave vector of the
formation potential in the x-valley. In the relation (3)
ummation is understood with respect to the repeated

pe the electronic energy spectrum consists
distributed in the Brillouin

nergy of the electrons in th

where EX(k) is the e
ntial tensor of the a-valley,

the deformation pote
electron and Vo is the de
and in the following the s
indices. In Ge and Si of the n-ty
of a few equivalent minima (valleys), symmetrically
zone. Round each of these minima the energy is

NN
) = — | =+ (4)
2 mi mso, ms

-1
-



where the axes z, ¥, = are directed along the principal axes of the e

elipsoids (for Ge and Si the equienergy s
= ma = ny and mg = m,)

nergy.
urfaces are spheroids, so that my =

- In the k-space we introduce the substitution

rol2 ‘12 12
k, = km}®, &, — kymil,  k, — kml?,

(4a)
Then the energy is
h2k'2
o(k’) = > (4b)
The density of the states in the volume dk, dk, dk, equals
dk,dk, dk, dk,dk,dk,
== A5H§w§wv~\w .
83 873
Using (4b) we obtain for the density of the states in the unit volume
83 YL e
E) = - £, 5
el | (5)
where
Mey = Z¥3(mymamg)L/3 (6)

is the “effective mass of the density of states” and Z is the number of the
equivalent valleys. (For n-Ge Z — 4 and for #-Si Z = 6). From the theory
of elasticity the equation of motion is well-known

mmﬁa mo.in

= . (7)
e Oy

where o;; is the stress tensor and o is the densit
is determined by the adiabatic chan,
at an infinitesimal deformation

y of crystals. The stress tensor
ge of the internal energy of the crystal

ow

Ok = » va
OUik | s=const.
where I is the interval energy and § the entropy
internal energy of the system consists of the elasti
contributions of individual electrons Welk)

of the unit volume. The
¢ energy W,(us;) and of

W = Wealui) + W(k). (9)

The lowest approximation for Wer is given by

Hooke’s law, the elastic energy
is a quadratic function of the strain tensor

Wealuy) = Wa(0) 4 & Aijerwsyung (10)

ibuti trons
A is the tensor of elastic constants. The contribution of electro
‘here Aijkl d
Mvwmammmm of (3) is given by the relation N
W k) = Egk)F(k,r, t) 4+ Flk,r,t) Ou;l, (
i k.

i » z-valley.
Falk, r,t) is the distribution function of electrons %m SMSMS all W&
o mconomq ampm electron density with the wave vector k at the mo”m
o Mﬁmaao t. The entropy of the nonequilibrium gas of electrons i
at the .

§=kS [(Fa— 1) In(l — Fo) — Faln Fal, L2
k. x

. s )
i t follows that the derivation (
1 Itzmahn constant. Hence 1 . . .
égﬂm NMV MMMM Mwoom constant F. Now we can rewrite the equation (4) in the
has to be .

form
Pu_ o +W% (i, 1, 1). (13)
e a2 Y ox50%; Oz PT

ich i i y the Bolt-
We shall consider nondegenerate electron gas which is described by
zmann distribution function in the equilibrium state

R (1)
—n — E§k)]},
Joalk) = exp :noﬂ n (k)]
where the parameter 7 is given by the relation
] %ﬁuw@wb\og

_ (15)
%  (2rmerkoT )

exp

i i i olving the
The nonequilibrium distribution function Fy will be determined by s g
Boltzmann transport equation

oF s OFy  dk oFx (8 (16)
P +v- Mn ™ A ok at | con.
where
1 m@ﬁalv (17)
YU ek

ime change
is the group velocity of the electron with the wave vector k. The time g
of the k vector is

1 oV,
LN P ) (18)

di # c h or
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[ ¢ fosk2dke V2 mye
[ foak2di

Bl oyt i

Non? B3

(.- )fox |/E dE. (38)

0
! Sagm mmwm of simplicity we introduce the only intervalley transition tim
<w mmé owﬂ: e replaced by the transition time among the nearest :&mrvozs.bc
ys. Lrom the equation (37), taking into account that it is enough am

he longitudinal com i
; ponent (since the ma, i
accompanying the acoustic wave can be ne B

M glected, we have rot E a 0) then

N(w L= NSE mm@u
o W |l + Vo) <1 — (1 4 iwr)ly) -+

T
+ 27— > 7, A!;anAfmbv Na HIA . ~v -
d = o « ¥

8 *

We shall a, o
Py .Qmm:%o erm& the sound wave propagates in the direction of the z axis
Vi &Somm Mb@.b? w\w ﬁmﬁp one of the principal crystal directions, that is Smer_

in whic e pure longitudi
T e Sisplaeeh rmw g inal or transverse wave can propa

ate.
s the form wu; — gl
vector components and

e;u, where ¢; are unit polarization

% = %o exp [i(wt — ¢z)].

Thus the equations (13) and (30) can be rewritten in the form

% o2u 0
QMNINH»MN!M+MMM®Q§8AF?3 (40)
a
ok, wl
mM” I.Aﬁmk.l»;wsf (41)
where . )

A= &mwwumn&\ﬁ @a == @M«@T E =g
By substituting (39) into (41)

22"

we shall find the expression for B,

Zr
o, . qub - vlmeﬁbv
B LA S L B S—
q A Zr\ %
-3 Aﬂl\ﬂ’i' Nav
\ Tz

where

and
1 ekoT
22  4ne2Npa

is the square of the Debye screening length of the pondegerate electron gas
is . .
of the concentration Noa = No/Z. The quantity Ais

z "
NM\_ gt o
A= & = Zt
a=1 NQV

a1l 1 — 1——
Tz
From the equation of motion (40) the absorption oowmm.o.wwsa of the mmzwn“
i i i inary part of the wave vecto
litude can be now determined as an 1magl :
w“%hh:& that ¢ > «) and the effective elastic constants can be determined
as its real part
z

i
930 = Im| » — OuNar o
U
=1
zZ

M i
m,\HvaimnplT‘H\Wm — O Nau . (46)
QN Q P u

a=1

We shall not write down the expression for a a A, which .oocE _oxo owwgwm%v
by substituting for N, but we shall discuss the expressions (45) an
for n-Ge and n-Si in the following section.

IV. SPECIAL CASES

In this section we shall apply the relations {47) and (48) to n-Ge and n-Si.
In this case, the deformation potential (3) is of the form

M\R = Amwﬂ%d. + @:Q\M&VQ\.M.RJ@@Q“ A%@v
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where a{ are the components of the unit vector from the centre of the Brilloujn
zone to the centre of the x-valley, @y is the so-called dilatation constang

and @, characterizes the narrowing in the transverse direction. The relation
(49) with

u = eu = eypel@e"
can be rewritten in the form
Vo = Ou(— igqu),
where
Ox = (Oa + 4 Ou) (q - €) + Ougn
Pa=1(q-a:) (aa.e) — }(q.e). (50)

e is the unit polarization vector of the sound and q= q/iql is the unit vector

along the sound wave propagation direction. In n-Ge the valleys lie along
the body diagonal (Z = 4)

1 1 , 1
7= (1, 1, 1); = 3= (—1 1); =
A b VV az ﬁ\“w A : e ) vv a3z

(L, =1, 1);

1]
o
&

g =737=(11—1); (a@
4 .?w A
and in n-Si they lie along the coordinates (Z = 6)
a=(£1,0,0); a=(0,+1,0); as=(0,0,+ 1)

z =N 4
Since 1/Z > a@iax = 11(1 is the unit tenzor), we obtain > @a = 0. Conse-

a=1

quently, for v, defined by the relation (43), we have

a=1

Vo = — iquBug,. (51)

The values @a for the principal direction of n-Ge and #-Si are given in Table 1.
Table 1 gives also the elastic constants characterizing the acoustic wave
propagasing in an particular direction, and with a given polarization. Hﬂo.u
the reciprocal mass tensor we have

I = 1 1
[YILEE S (L N (52)
my my my
z
1 1 =
Sels
Nr m
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Table 1
n-Ge n-Si 1
m e @1 ‘ P2 _ @3 _ @a 23 _ @2 A @3
1 1 1 1
: —_— -] = 0 0
{(1,0,0) ] (0,1,0) il 3| = 0 ca4 ]
(0,0, 1) Ve | o V2o o 0 | ca
o 3 3
1L —
J2 1 1 1 RS
_\% (,—-1,0)| O 0 0 0 IW» — M 0 - (c11 — c12)
! s Ve 1 1 1
1 1 Ve| Ve S T R O
,_ﬂwﬂﬁ.r: _anﬁwlrov 0 ahee e 0 Ve G 3 (e11 — 12 + caa
Y
(1,0,0) 0 0 0 0 5 |~ Fi- =™
1 1 1 1 1 1
lwc (1, 1,0) F — [— — T e e ——{epg - €12 - 2¢44)
Vg2 " 3 3 3! 3 6 6 3| 2
2 1
ﬁ)\mI: L, 1) 2 .||w| IM ) 0 0 0 ﬂ@:+w$w+»§t
3 3 9 9
where
1 1 1 2 1 24a my
— ===+ —|=———, a=—. (53)
m 3 \my me me 3 m
Further we shall use the following denotations
. 2Exq
mM' . q=ry, q.fa=2%a, €= - T (54)

Where for ry and x4, owing to (52), it follows

3 3

HmﬂEi:laim.n&q&v o=

[ — (1 —a)(q.ax?].

o

The values of the quantities ry and x4 are tabulated in Mertsching’s paper [9].
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For spherically symmetric surfaces, where ¢ = 1 and ax = 1, s equals ¢ _\m@/\s.
that is I, is the mean free path of electrons.

Since the sound velocity w is much lower than the mean thermal velo
of electrons (for temperatures roughly higher than 1 °K) we have

city -

ot € qlg;
then I, given by (34) can be written as

P arctg qly iwt

~ = . 55
: qla 1+ ¢ (55
We shall also make use of the fact that the intervalley transitions are lesg
frequent than the intervalley transitions

Zz
— < L.
Tz

Now we introduce the effective relaxation time

1 1 Zt e
fH[A!Jrlxv. (56)
T {4t 1z 3

The reason why 7, is called the effective relaxation time will be seen from
the following expressions, which will be derived for the two limiting cases:
a)gly € 1,qL € 1 and b) qly > 1.

a) gla € 1, 9L < 1. In this limit we obtain

2l = ImB (57)
1
A — 4 =-—ReB,
q
where
Ng 1Ty
B=—-———"0. Oaps |1 — ——— |+
N\nOS 1 1_| lwt,
Ta
Oy 2> ———m—
= 1+ iwt,
JT ; WTaPa \ « Ammv
1 + iwt, I 1, ’
) 1 4 MSﬁM
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and

, o/ Zr?
we (o)
(T Tz
However, the expression (58) will be much simpler if we assume that the intra-
valley transition are much more frequent than the intervalley transitions,
that is
Zt
<1, (59)
Tz
so that 7. ~ 7, and if we express « and A’ for the transverse wave. For the
transverse wave

Pa

———— =1 0. (60)
1 4+ 1w,

-4

Therefore, for the absorption coefficient of the transverse wave we abtain
Now Pl

o = B2
ZkoTow?

Pt 61
" T+ (e (61)

having used the approximate relations  ~ wq and 2 = gw?, w is the velocity
of the corresponding acoustic wave. Similarly we obtain for the elastic constants

Ny i

- O > (62)
ZkoT 1+ (070)?

M—i=

Now it can be seen from (61) and (62) why 74 is called the effective relaxation
time. .
If we use the gy values from Table 1, we obtain for the change of the elastic
constants 44 = 1’ — A from relation (58)
$ (dery — derp) =0, depn =0 for n-Ge
and
Acay = 0, WABQ: 4+ 24c¢12 + hhniv =0 for =n-Si.

Consequently, in n-Ge only cas changes and in #-Si both ¢ and c1p change

in such a manner that Acy; = — 24eciz. For Acas we obtain in the limit wta <€ 1
1 Ny

Acay = — — O ——- (n-Ge). (63)
" 9 kT
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This result agrees with the one obtained by Keyes (quoted in [3]).

For Acyy in the limit wz, < 1 we obtain
Ny
koT
This result is twice smaller than that derived by Mason {3].

b) glx > 1. For the sound absorption coefficient and the changes of elastig

oowmgbmm in the case of strong screening of the interaction potentials by the
conduction electrons, that is ¢ < 1, we obtain

2
- — — 2 5
Adcyy = = o (n-Si). (64)

_ z z
mm  NowO,

_ s Pa 1 - N Pa
9 Nﬁ\ncsvw\mmgm @Q ﬁ\m + @a + ]Wl @ﬁ Aﬂ - Qv v - Ammv
=1 =y

x
a. a=1

WA
Zk,T

M—i= P2, (66)

If the screening of the interaction potentials by the conduction electrons

can be .bom_moemm, that is if ¢ > 1, we obtain the expressions for the sound
absorption coefficient and the changes of elastic constants

z
m 2@8 m‘m
o = —
2 Z(koT)*20w? _\aa (67)
Nﬂnw
No
A —2A=— 62,
ZkoT * )
2=1

. The expression (66) gives the same change of elastic constants as we obtained
in arw case a) for wt, < 1. However, if we do not consider screening the results
are different. So for n-Ge in this case (¢L > 1) we obtain

Ny
keoT

and Acsq (n-Ge) is the same as in the case a), the formula (63).
For n-Si we obtain ’

deyn = Acig = — (O + 1 0,)2

(n-Ge, qL > 1) (69)

Ny
Acga = 0; Aeyz = .w@wi[ Aeis - 70)
12 3 kT + dcn;g A )
B 2 2 2@
= —[§06,+(@:+ 50,)? o (n-Si, gL > 1).
0
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V. CONCLUSION

Starting from the wave equation (13) in which the interaction of the dis-
w_momﬁmne with the electrons is introduced, which latter are described in the
nonequilibrium state by the Boltzmann transport equation (29), we have
derived the sound absorption coefficient and the changes of elastic constants.
The general approach given in sections II and III was then applied to the
nondegenerate n-Ge and n-Si. We derived the absorption coefficient and the
changes of elastic constants due to the interaction of the acoustic wave with
the electrons in the two limiting cases gla € 1 and ¢ly > 1. In the former
case we considered the strong screening (gL < 1) but in the latter case we
distinguished two possibilities, the strong screening and the weak or no screen-
ing (¢L > 1) of the interaction potentials by the conduction electrons. We
mainly concentrated on the derivation of the changes of elastic constants
when considering both the intervalley and the intravalley transitions. Our
result {in the case of strong screening) for the change of the c44 elastic constant
of n-Ge agrees with that derived by Keyes (see [3]), whereas for the change
of ¢11 of n-Si, which changes together with ¢12 in such a way that Acyy = — 24cw,
we obtained the result which is twice smaller than that derived by Mason [3].
The authors of paper [4] suggested that the intervalley and intravalley tran-
sitions of electrons would contribute additively to the changes of elastic
constants. We considered both these transitions but we obtained no additivity
of these effects.
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