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A CONTRIBUTION TO VON NEUMANN’S APPROACH
TO THE QUANTAL ERGODIC THEOREM

STEFAN BARTA*, Bratislava

In the paper the Schrédinger equation is transformed into a system of
differential equations similar to the Hamiltonian equations in classical
mechanies. In this way it is possible to solve the ergodic problem in quantum
mechanics analogically to Khinchin’s method in classical mechanics. The
physical observables are averaged on the phase surface @ with the density of
the probability which is the time invariant. It wes shown that the sufficient
condition for the justification of the ergodic theorem is that the dimension
of the energy shell must be sufficiently large according to unity.

L. INTRODUCTION

The fundamental problem in statistical mechanics is to justify the use of
the Gibbsian canonical ensembles. There are many ways of solving this problem.
One of them starts under the assumption of the validity of the ergodic theorem.
The ergodic theorem asserts that the time average of the physical observable
characterizing one system is equal to the microcanonical average of the same
observable. Thus it logically follows that the main problem of this method is to
show under which assumptions the above mentioned theorem is valid.

J.von Neumann was the first to formulate the ergodic theorem in quantum
statistical mechanics in Ppaper [13] showing simultaneously under what condi-
tions the theorem is valid. Paper [13] was followed by some other papers,
especially [1—5]. The authors of the papers, after the critical evaluation of
certain weak points of paper [13], partly simplified the method of the proof
and partly showed that the ergodic theorem is valid under weaker conditions
than those introduced by J. von Neumann. The criticism refers mainly to
the method of averaging by means of which J. von Neumann determined
an upper bound for the time mean of the expression

(B> — (Foup,
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where (F> is the quantum-mechanical expectation value of a macro-operator
P, {Fyy is the microcanonical average of a macro-operator F.

The authors.come to the conclusion that the method of averaging over all
possible macro-observers does not respect consistently the equation of motion
and therefore is unable to give the microscopic criterion for distinguishing
the ergodic systems from nonergodic ones.

We suppose that it will be useful to show the following fact: The use of
J. von Neumann’s method of averaging is limited only to trivial operators
in the case when we accept this method exactly. That fact can be proved by
the following consideration:

Proceeding according to Farquhar [3), let the isolated system be cha-
racterized by the Hamiltonian operator H, whose orthonormal set of the
eigenfunctions we denote by {gi}. Further let {pnu} be an orthonormal set
of eigenfunctions of the macro-operators!; » indicates the energy shell, »
indicates the phase cell and ! indicates the functions within some phase cell.
We shall assume the quantum state of the system to be in a certain energy
shell, characterized by a wave function which we can write either in the form

iEyt
Y(t) = QrPr exp | — 5 (1)
3
or in the form
N &
H(t) = > > bult)Pnu, (2)
7=l =1
where
N .
> 8 = 8.
=1

The sets of the functions {gi} and {®n,} are connected by the following
unitary transformations

N 3 N &
Qn.\n = M M qwneu QS,GN == M M AGS.E _ Qwv @SE va
v=11=1 v=1 {

and

S S
Dy = M QMB& Px = M {pr | Dpor) Pk
k=1 k=1

where Ug,nu are the elements of an unitary matrix. From the relations (1),
(2) and (3) we obtain

! The construction of the macro-operators is described in papers [8] and [12].
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The probability of the state of the system being in the v-phase cell is then
given by the relation

8o Sv
) i(Be — Byt .
Uy = [6(8))2 = Q. exXp | — ’I&I Uk ot Ukt -
i1 E ¥

=1

The quantum mechanical expectation value of the macro-operator F is given
by the relation

N
By = (PIFWPS = M Foto,.

The ergodic theorem formulated by J. von Neumann asserts that

{Fyr L (Fyy (4)
is valid, where
TN
1
{FSq = lim— % Fyu, dt
T-w mN._
0 =1
and
. N Sy
Iy = M F,—
v=1 @

for all macro-operators. Since the relation (4) is to be valid for an arbitrary
macro-operator, it is enough to prove that

oy = {upday

is valid. It is possible to show [3] that
S 8v $v
{wpr =3 ap > |Upul? + DD Gy > UsaUs w
5 S s ET i1

is valid. It is evident that the second term is not zero only in the case of
energy degeneracies.

The construction of the macro-operators from the micro-operators is not
an unambigous operation and therefore J. von Neumann assumed that
with the given accuracy of the experimental set-up, it is possible to divide
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the energy shell in many ways into phase cells so that their number will
be the same. Each such subdivision is connected with some macro-observer.
J. von Neumann removes this ambiguity so that the quantity (u,>g
averages over the unitary continuous group?. If we denote this averaging
process by the symbol ¢ g, then for the validity of the ergodic theorem
it is necessary to show that

z
B30 = 3 (Folusprdo L {F>u (5)

v=1

is valid. In J. von Neumann ‘s method instead of the relation (5) the relation

N
LEFdrdo = MﬂweAAgevev._ = o (6)
is proved.

If we realize that each basis {®nu} is connected with the standard basis
{®x} by the unitary matrix, it is evident that the basis {®nu} arises by spin-
ning from the basis {pz}. With the application of all elements of the unitary
group in the standard basis any phase cell fills up the whole energy shell.
If thus during the averaging process we assume the eigenvalue of the opera-
tor F to be a constant, the relation (6) is correct only in the case if an opera-
tor F, reduced to an energy shell is a trivial operator, that means a unique

——operator multiplied by the arbitrary constant.

One can remove this lack in the following manner: We choose the definite
basis as a fixed one and the inaccuracies of the definition of the macro-ope-
rators are described by a definite distribution of the initial states of the sys-
tem. P. Bocchieri and A. Loinger proceeded similary in papers [1—2].
The above authors assumed all initial states of the macroscopic system to
be a priori equally probably distributed over the whole energy shell. The
aim of this paper is the same. The method of solving the ergodic theorem
described in this paper brings however some improvement which can be
summarized in the following points:

1. It justifies statistical mechanics, both classical and quantum mechanics
from a common point of view

2. The measure of averaging in the phase surface is choosen as the time
invariant and in this sense it respects the equation of motion.

3. A sufficient condidion for the validity of the ergodic theorem in quan-
tum mechanics is weaker than those introduced in the preceding papers.

2 The definition of the integral over this domain of the paramecters defining the elements
of the continuous group is described in papers [6—7].
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L. ,,CLASSICAL* FORM OF QUANTUM MECHANICS

EQM.OMH MM&MMM“EM& it M&: vo. mm<.mbemmmo=m to transform Schrodinger’s equa.-
Bt o%% em o .m”mELnobwmz equations [5]. We consider again an iso-
o v mm.@aeaﬁumm. by the Hamiltonian operator H and the wave
unction ¥(t), which describes the quantum state existing in some ener

shell. Further let {@x} be an orthonormal set of the eigenfunctions of »M.M

Mv m m Hﬂuﬁﬁ 341
EN.WHQ (0) ®H@ﬂOHM U@HO; 1, OO & Q@MH € @H.@.V~1 m.~..~®=. H.SQ wave %ﬁHHOﬂHOHH can

S
P(t) = 3 c(t) Oy.

k=1

‘When the function P(t) is substi i
e stituted into the Schrédin i
operation is performed, we obtain e equation and an

S

N den(t) .
1 a = w ci(t) Hypy, (1)

——
kwl

T msk — A 3_ _ Rv HaOH.
W .T.@ (] Q m Q . w\ w
ever m we .:.\—&H.OQ.#MOO H.@Nh \ @Hupﬁuwﬁw c ﬂm e

1
m = lﬁ\lm, [en(t) + em(?)] (8)

1
Pm = x_\lmll [en(®) — cm(®)]. G

.u..MSMro@_oEmﬁ ¢m(t) from the system of equations (8—9) and substitute it
Mz 0 the m@:ﬁuoz (7), then after zeroing the real and imaginary part we obtain
or an arbitrary m, the following system of equations V

QQS . oH
& opn
dpm . oH
Qm N mns a\z\HHu Mu ...u‘wu

where the function

1 A 1 H
H(pr,qs) = — s 2 M M il
(Prgx) 5 HHPY = 5 ; {(oeps + qegqy) + i(qrgy — 9ipk)}
k i

(10)

is called formally ,,the Hamiltonian function®.
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Analogically, according to relation (10), we can express also the quantum-
mechanical expectation value of an arbitrary Hermitian operator F. Its

form, expressed by the quantities {px, qx}, is
F(pe, q) = PP = WMM Fis{(pps + @) + iqeps — oi)}. (11)
2

In the case when the operator ¥ is a macro-operator, relation (11) has the-
simple form

Flpr, qe) = % M Fi(py + 43). (12).

From the condition that the norm of the wave functions is unique we-
obtain

S
HNP) = NMH Pk + 96) = Glpe, q) = 1. (13).

The formal agreement with the mathematical form of the entry of the
quantum-mechanical equation with the equations of motion of classical me-
chanics enables us to solve the ergodic theorem in quantum mechanics analo-
gically as in classical mechanics. The set of variables {pi, ¢x} which defines.
the function ¥P(t) in the representation {®y} will be called ,,dynamical variab-
les* and we choose them as coordinates of the 2S-dimensional Euclidean
space, which we call the phase space. The time course of the quantum states
will be illustrated in the phase space by a trajectory. All possible trajectories
are found on the surface @, of which the analytical form is given by relation
(13). If we observe the relations (10—11), we see that the Hamiltonian function
and the quantum-mechanical expectation value of the operator F have a re-
latively simple mathematical form — a bilinear function — contrary to clas-
sical mechanics, where especially the potential energy and analogically the-
physical quantity F(px, ¢x) can depend on dynamical variables in a compli-
cated way.

OI. JUSTIFICATION OF THE ERGODIC THEOREM

In classical mechanics the ergodic theorem asserts that if an isolated sys--
tem, characterized by the Hamiltonian function H(ps, ¢x), is ergodic, then

%@Q@: qr) du

Flpi, qx) = MMIZII (14)
Ze \&

where F(py, qx) is a physical quantity characterizing the system in the dy-
namic state defined by the set of variables {p, qx},
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m:ﬂoaobmzmmowwcwromwrwm.mrm@mam analytically expressed by the Hamiltonian
’ o1 which is F, dy i ime i ; .

surface g and t5 expression i @ is the time Invariant measure in the

du — az
_
M \mm e [om\2] ’ (16)
—, + e s
= f@%@ mﬂa\. .

‘quantum system is ergodic

2

ME? k) dp
Flpp,qe) £ &
.w\mt (7)

should be valid.
W, . ..
e know from classical statistical mechanics that it is a necessary and

expectati i

o %n MOMM,\SM AMWEHM Mm erw.owwggw I the representation {D+} is the additive

b aa?a.?o. : inchin in paper [6] showed that for additive functions
measure of the points on the surface Xy is O(N-1/4) for which

| F — (F,
(Fq

is valid, where F is defined i i
in ed by the relation (15), {Fq is defined by relation
For & i i

rage 5::” /MMV”MM rom: Mom:@om with a sufficient approximation the time ave-
A ¢ phase average on the surface Xy, I

e ; : £. in our case F(py,

,o&o:wmnmm the m.cwm@om G have a simple analytical form and we can n:MWMmMMM

© an estimate analogous to relation (18) more Precisely.

> KN-1/ \ (18)
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According to relation (16) the measure du has the form

d ax 1
# 26\ [oG\2 2 (19)
) =
Ok oqx
&

and, as mentioned above, it is invariant along the trajectories. After substi-
tuting relations (12) and (19) into relation (14), we can write with regard
to the spherical symmetry of the surface G on which we are averaging

‘ 2

5 k=]

0 k#j

{pepi + g0 = A

and

2T

%
<F>o= .
S
For the estimate of the measure of approximation of the interchange of
the time average with the phase average, it is necessary to calculate the rela-
tive quadratic fluctuation. The relative quadratic fluctuation is defined by

the relation

V<Y = <Fyoye <%0 — (<F o
By = , = ~ ) (20)
<> <F3>y
First we caleulate the quantity (#)2. According to relation (11) we can write
By =133 0} + 0D @} + ) FuF. (21)
2

Averaging over the surface ¢ we obtain

B0 =13 Sk ) 0+ geFsF; (22)

From the spherical symmetry of the surface @ it follows
@ = {(Pi + gefo

b= (P} + q)) (12 + a3
4

a+(S—1)b= NA@M%%VOHM

(23)

is valid for all k& and j. According to appendix 3 in the monograph [3] we

can write



a =4 §
S8+ 1) (24)
After substituting relations (24) into relation (23) we obtain
b=4 !
SS D (25)

Aft . .
er substituting relations (24—25) into relation (22) we obtain

(P2 = — L M . 1 2
1] ®A®+Hv : .N*leTQAQlTHv MN&* .

k

inally, if we substitute relation (21) into relation (20), we obtain

2
S8 +1 k Fy) —— F
B = E
2. Fi =
x :
S
Sp#*2
N 8
VS+1  spr (26)
8

SpF2 [SpF Py

The expression |/~
maximum and mj .% 8 Fow’ where Fuux and F. min “are the
and minimum values of the operator F in some energy shell

we realize that § — exp 10 8 ollow: a
.: lize that S P 102 [8], it follows f i 3
. “ rom relation (26) th 13
nearly constant on the surface @ without the set of the wowzmm Awm M&oaﬂ%m ’
y a-

——
KE, )

If we use ’s 1 i
Schwarz’s Inequality, we can write
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(FY — LB < ((FY — LFYYo)e.

The operations of the time averaging and averaging on the surface G are
commutative operations as it was shown by P. Bocchieri and A. Loinger
[2]. Using this fact we can write

LLFy — (FD00 < (FY — (KFydo)2ro = (27)
= ((Fy — L0 = LBy — (FDo)Ed0.

Using relations (26—27), we obtain the required estimate

V@ =« _ 1
o Is

Relation (26) is valid not only for macro-operators but also for micro-opera-
tors used in concrete applications. This can be proved by the following consi-
deration: The quantum-mechanical expectation value of the micro-operator
F in the quantum state described by the wave function ¥(t) can be briefly
written as Sp(PyF), where Py = |P)(P|. If we use relations (14) and
(16), the operation of averaging on the surface ¢ will have a simple form

dx dz

KFypo = |Sp(Pyn F) i Sp wesm_mus = SpW.iF,

(&) G

‘

where

R I P
Wi={ Pvw Mu :

¢
Analogically we can write also

P52 = CPIRPYCPIRPY = Sp(Py PP,

and

< 0. L. L dX .
{LFH2y = mwﬁm.s@mus@vw = Sp .ﬁe@.ﬁsm‘w = SpWaF',
e e
where
R R )
We= | P,FP, =N
We know from quantum mechanics that the addition of operatos is an
invariant operation and Sp is invariant with regard to a unitary transformation
of the orthonormal set. We choose such a transformation in which the bilinear
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function expressed by relation (11) Passes into the quadratic form (F is the
Hermitian operator) and in this way we transform this case into the case
of a macro-operator. ;

IV. CONCLUSION

J. von Neumann in Paper [13] postulates three sufficient conditions for
the validity of the ergodic theorem. These conditions are: the inequality
Sv > N for all v, 5 non-degeneracy of energy eigenvalues and non-zero diffe:
rences between the energy eigenvalues. P. Bocchieri and A. Loinger [2]
as well as J. K. Farquhar and P. T. Landsberg [4] Postulate for the vali-
dity of the ergodic theorem the inequality s, > 1 for all o, Relation (26)
does not give any condition for the dimension of the phase cells but it re-

in papers (6—7). It is worthwhile to mention that the obtained results enable
us to state that the quantum-mechanical expectation values of the Hermitian
Operators are in a considerable majority of set of points of the surface @
»»almost constant* ang equal to the microcanonical average. To justify the -

ergodic problem we must accept the hypothesis that3on the surface ¢ there
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