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CONSTRAINTS FOR PARTIAL WAVES
FROM REGGE ASYMPTOTICS AND
PION-NUCLEON SCATTERING IN P,, STATE!

WINFRIED BRANDT*, FRANK KASCHLUHN*, Berlin

The constraints for partial wave scattering ampiitudss from Regge asymp-
totics are studied and imposed on an appropriately chosen N/D ansatz. It
turns out that generally subtractions in the N and D functions (i. e. CDD
poles) have to be included, whose parameters are fixed by the constraints.
We discuss an ansatz where the lower energy region can be treated by means
of a cutoff theory. The cutoff indicates the region where the Regge behaviour
of partial waves is essentially given by an expansion with respect to in-
verse powers of the logarithm of energy and of the energy itself. Application
to pion-nucleon scattering in the P11 state yields a phase shift in agresment
with the experimental one (including a second resonance at about 1750 MeV).
Here at least one CDD pole is necessary in order to satisfy already the leading
asymptotics. All parameters are determined by the asymptotic constraints,
except the cutoff. As required the latter comes out sufficiently high (In 4> 1)
and we find that the amplitude depends only weakly on it.

I. INTRODUCTION

We study the constraints for partial wave scattering amplitudes as implied
by Regge behaviour of the total amplitude. Under obvious assumptions
we find [1] generalizing well-known results [2—5] that the asymptotic behav-
iour of the partial waves is given by an expansion with respect to the inverse
of the logarithm of energy and of the energy itself. The absence of terms of
pure power behaviour 1/s% (n = 0, 1, ...) leads to the constraints. We in-
corporate the constraints in an appropriately chosen N/D ansatz where ge-
nerally subtractions in the N and D functions (i. e. CDD poles) have to be
included, whose parameters are fixed by the constraints [6]. We understand

1 Talk given at Elementary Particle Physics Seminar at Smolenice, June 1—2, 1970

2 Part of this work was done while one of the authors (F. K.) was staying .at JINR
Dubna and at CERN Geneva.

* Sektion Physik der Humboldt-Universitat Berlin, Bereiche 01 und 02, Theoretische
Physik, 108 BERLIN, Unter den Linden 6.
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the whole mechanism in such a way that in the lower energy region only
a small number of subtractions is necessary, which has to be enlarged if
one tends to higher energies (thus depending on the accuracy to which one
fits a partial wave to a given asymptotics). Our special N/D ansatz is chosen
such that the lower energy region can be treated by a cutoff theory. Here
the cutoff indicates the region where the asymptotic expansion is valid. For
the sake a simplicity we approximate the nearby singularities by pole terms.

In section 2 we state the results concerning the asymptotic behaviour
for a scalar model, i.e. for a two-particle scattering of scalar identical particles.
The detailed derivation and discussion can be found in ref. [1]. In section 3
we apply the theory to pion-nucleon scattering in the Py, state. Here at least
one CDD pole is necessary (as a consequence of the special spin structure)
in order to satisfy already the leading asymptotics. All parameters including
the pion-nucleon constant and the nucleon mass are in principle determined
by the constraints, except the cutoff. The calculated phase shift imposing
in the N/D equations as input N*, o and N exchange is in agreement with
the experimental one, i. e. in the lower energy region we find the zero, the
Roper resonance and a second resonance at about 1750 MeV. As required
the needed cutoff is sufficiently high (In4 > 1).

II. THE SCALAR MODEL

We consider a two-particle scattering of scalar identical particles with the
mass m and write the partial wave scattering amplitude in the form

Ade) €%® sin §y(s) )
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Here d(s) is the phase shift, p(s) denotes the phase space function

§ — 4m?
ols) = \ —_— (2)
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and
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is the ratio of the total to the elastic cross section in the I partial wave.
The asymptotic behaviour of the total amplitude as it is relevant for the
partial wave projection will be assumed in the form
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Here the index P refers to the Pomeron and lower lying trajectories are
involved in the rest3. Actually the asymptotic behaviour (4) follows from the
Regge theory only for ¢ = const or u = const, respectively, whereas for
a fixed 25 4 1 all three variables s, ¢, « tend simultaneously to infinity.
Thus in general expression (4) will describe the asymptotic behaviour for
a fixed z 7% - 1 only if for s—> 4 00 A(s, 2) is strongly restricted to forward
and backward scattering, respectively. This is the case, for instance, for all
amplitudes of the Veneziano type which for a z = -+ 1 vanish exponentially
for s+ —+ 0. The same is true for the Pomeron if one adopts, for instance,
the extra-Pomeranchuk term discussed recently in ref. [7].
The partial wave projection of expression (4) has the form
’ g 2z
kﬁ%mv —=x Q&wﬁﬁ&v; .Nu~ 1 +— S Amv
8400 s — 4m? § — 4m?
—(s-4m?)

Since the contributions for s > 4 oo are assumed to be restricted to forward
and backward scattering, respectively, we may replace the lower limit by
some — T <0 (T arbitrarily large, if necessary). Then by expansion of
Bp(z) at some xy < 0, repeating the argumentation for the remaining trajec-
tories which are all to be assumed linearly rising

ox(r) = ap + brx (6)

we may' derive the asymptotic structure [1]
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This result is an extension of expressions derivedin ref. [2—5]. The contribution

8 For simplicity we assume the absence of the Regge cuts. Howsver, there are good
reasons to believe that the general results we derive do not depend on this.
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given by the first curly bracket is from the Pomeron; 2(s7) means O(s*) up to
logarithmic factors and for the parameters we find

[1 4 (—1)] 1676'(0) ©
o 01 M = T m 1 e ﬂ. w
a Lorbn Gtor (00) cp e 53] o rea (8)

Thus we see that the asymptotic Regge behaviour of partial waves is given
by a power expansion with respect to 1/s coupled with an expansion with
respect to inverse powers of In s. The important point is that no pure power
terms in 1fs appear, i. e.

no termsin lfs* (n=0,1,2, ..... ) (9)

which will lead to constraints discussed below. Of course, expression (7) says
generally nothing about the behaviour for s-» — o0, where in particular for
the linearly rising trajectories (6) we expect an exponential growth as it is
known, for instance, for the Veneziano model. Thus, if we write down a dis-
persion relation for 4;(s), we must incorporate this behaviour explicitly in the
discontinuity in the asymptotic region s— —co. Concluding this discussion
we mention the following asymptotic behaviour of the inelasticity function
By(s) (uneven ! excluded)

ImA;? (s) Ins ¢p
Ry(s) = — —h -2 . (10)
o(s) s> 4oo a Ins

Let us now turn to the derivation of the dispersion relation for 4;(s) incor-
porating the asymptotic behaviour (7). We assume first that expression (5)
with the lower integral limit —7 is valid also for s—> — oo, Then, restricting
ourselves to the first leading term of relation (7) and observing from expression
(5) (with lower limit —7) that in this order A4y(s) is uneven in s, we may
write down the following decomposition in asymptotic and non-asymptotic
contributions

s a 1 w(s’) g*
Afs) == ds' ———F— | ds' — ——— i L
b s'ns’(s" 4+ 8) = 8 —s s—m?
1 [ B4z s f a
e mm\El_.l dg— (11)
b 8 —s T s"Ins’(s” — s)

4 We may expect that this genecral property is also right in the case of the Regge
cuts and fcr tiajectories which are not strictly lincar. Moreover, if even pure power
term s appoar (with definite coefficients) they lead to constraints.
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Here (— o0, —s.) and (sg, +o0) is the left-hand and right-hand cut, respecti-
vely, and wi(s) is the discontinuity across the left-hand cut. We denote the
asymptotic region by |s| > s, where the expansion (7) is applicable (which
means obviously In|s| > 1). We took into account the symmetry property for
the asymptotic parts which certainly need one subtraction. However, the
subtraction constant is determined and equal to zero since from the formula [5]

0

8 1 1 In s
—P | ds’ F—In -
T sIns'(s" F s) s> 400 T In s,
1 ki 1 Se .
— +O(n-ts) 4 ——— 4 ... (12)
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one verifies easily the desired asymptotic behaviour of the dispersion repre-
sentation (11) (analogously one proceeds with the non-leading terms of expres-
sion (7)). We note that the compensation of the dominant (real) terms of
relation (12) is actually necessary to get the required asymptotics: vanishing
and purely imaginary (which is automatically guaranteed by the symmetry
properties in s). We mention the following with respect to a possible blow-up
of Ay(s) for s > — c0: we describe this by replacing a; by a;(s) in the asymptotic
left-hand cut in relation (11), i. e. in the first term on the right-hand side,
where a;(s) has an exponential growth for s-> —oo and tends to 1 stronger
than any power for s > + c0. What we assume is that a(s) is also of order 1 in
the lower energy region (|s| < s;), where the first integral is than of order
2(s71).

For the whole expansion (7) incorporated in a dispersion relation like eq. (11)
one can show [8] that all In-terms of the asymptotic expansion of the dispersion
relation are in agreement with the required asymptotics (7), and this is true
in any order £(s~"). The reason is that this dependence is due to the upper
limit 4 o0 of the asymptotic integrals in the dispersion relation. However, for
the contribution from the finite integration region in a relation like (11) we
get constraints according to condition (9), thus, e. g. for n = 1 (n = 0: sub-
traction constant equal to zero in eq. (11)3

-85L 8e
w s H. H 7 1 1
e + O(In2s;) — — | ds’wi(s’) — 92810 — — | ds'oR)14;2 = 0. (13)
w Ins, 7 b

~8c Sr

5 We assume uniqueness for the expansion (7) by means of the existence of a Mellin
transform.
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reach also higher €nergy regions.

wowgm_wmw@mom now to the discussion of an appropriate N/D ansatz and the
i mulation of the corresponding constraints. To simplify the relation we
MWM.OMQB@?,»\ the Mmm..a-vmma cut by near-by poles at 8 and the asymptotic
part (—oo0, —s,) as it is indicated on Fig. 1. The quantity s, appears then as

O)

Fig. 1. Singularities in the s-plane
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(14)

“@wm (oR)r is—Im A7Y(s) on the asymptotic left-hand cut which is known
SO Hmu@. (11) A.pm well as oR in the physical asymptotic region). We included
one CDD pole in the sense that We use a once-subtracted funetion, although

10

the particle pole is involved in N(s). The reason is that we want to incorporate
the Regge behaviour beyond the leading term. We mention that the parameter
Jo in N{(s) is necessary to get the Regge behaviour in the leading term with
a once-subtracted D function (the purely imaginary behaviour is due to the
compensation of the dominant real parts of the asymptotic integrals in D(s)).
We mention that the case of no CDD pole is simply retained by dropping the
particle pole in N(s), whose parameters are then given by standard relations

N (m?2)

D'(m2)’ (15)

D) = 0; g2 = —
Here we have one free parameter fo to be determined by one asymptotic
constraint (corresponding to » = 0 in eq. (5)). The ansatz (14) involves. three
free parameters fy, g2, m? to be fixed by three constraints. The explicit calcula-
tion [1] shows that they are given by (we write N(s)—> fo + fals 4+ ... for

$~> -4 00)

8c

1 oRN
order s9: — | ds + 14+ Q") =0 (16)
T s
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order s7': — | dsgRN — —"—scIns, + O(s;') = 0 (17)
T T a
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Be
1 2 fa
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T T a
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If one would like to impose more constraints one generally has to include more
subtractions in N and D (i. e. polynomials of a higher degree and thisin N and I
in the same order). Observing that the asymptotic integrals in D{(s) are in the
lower energy region (|s| < s;) of the order Q(s;') and that because of the
constraint (16) the first two terms in D(s) can be written unsubtracted, we
arrive at the following N/D ansatz for A(s) valid in the lower energy region

Gy ¢*D(m?)

fot § — 8 B § — m?
A N{(s) _ E;
(8) = - (19}
—— | dsoBR ———
T J %~A%~ — %v

8r
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MFM mebm that the behaviour in the lower energy region can be described
y efinite cutoff theory, where, however, the constraints (16)—(18) refer

o the full Regge asymptotics. Concluding thi i
: ; this section i i
-asymptotic behaviour of the phase mrm.am e il

b

2Ins

(s) > (n 4+ P + + e (20)
ﬁmzor ioﬂdmm the standard Levinson bound; n corresponds to the number
: wmzcmoﬂwvwmwoﬁosm. We assume, of course, that further subtractions in the D
onetion NMHMM. Aﬂwﬂmmm to no zeroes (i. e. no poles of A(s) excluding thereby
i es 0 and bv.mbm Interprete the case where the corresponding
subtrac lons in the N function do not impose zeroes on it as CDD poles at
infinity (which obviously do not occur in the pole approximation) e

HI. PION-NUCLEON SCATTERING IN THE P,; STATE

W:MMWH pwwwmmrgm above theory to #N scattering in the Py, state. It is well-

o ere & owuo-orma.:& N[D approach without CDD poles is not
cient %mn least, if one considers only nearby singularities as input. Anal

gously as in eq. (19) we use following ansatz for the amplitude P e

N
R G
bﬁ?cv
16 y33D11(—wss) © cu | Dulw,) Du(w)] in
_ 9 © 4+ w33 2iImew © — o, 0 — o +M
X 5 ¢ : (21)
z ’
—= | dognry 2Y1@)
i o — o

1

The inputs are approximated by poles as indicated in Fig. 2 and we use the

MM»MWE@ o =W — M, where W — v\ s and M the nucleon mass.6 The first term
o mbmcv represents the N* exchange, the second the e exchange and the
ird the nucleon pole including the small contribution from the N exchange.

The phase space f ion i i i
P P unction is used in the form [9] (the plon mass is put equal

§ We d i
— :aéw.mw W@o Mro question of the McDowell symmetry since we are only interested
arby-singularity region for the inputs. Of cour: a ptc
s . i : se, the treatment i i
requires a special discussion given elsewhere. et ol e eymptoties
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o11(0) = (w? — :m\m.yx 2 4 w/M ﬁe (22)
2 (14 of/MpP w->+oo 2

where the threshold behaviour is handled in the standard way. The asymptotic

behaviour is now of the form
a

o) et o s =
o—>4x oln o

1
Tt ()

"16mhM?2 -

i =

where o) (c0) is the total pion-nucleon cross section in the isospin state
1 and the inelasticity function Ry1(w) goes for large o like

2 Ihno
||W|‘
8-> oo M2 ail

Ru(w) +0). #

Because of relation (23) (with the extra factor 1/w) there is now no constant
{fo) in N11(w) (compared to the ansatz (19) with the asymptotics ~ i/ln s). This

®

N pole 9 \la.

\physical cul

Fig. 2. Singularities in the W-plane. N pole
N pole W= M; N* pole W =
= M — 2°2; ¢ poles
W=M-—184461

means that here the introduction of one CDD pole is necessary, since other-
wise the N/D system would be overdetermined, and this already for satisfying
the leading asymptotics (compare the discussion following the formulae (14)
and (15) and use there fo = 0). For A at about 20 000 (In A ~ 10) we find
indeed sufficient agreement with the experimental data as shown in Fig. 3.
For the inputs we used standard values. We represent the parameter depend-
ences in Tabl. 1. The inelasticity Rii(w) was interpolated smoothly from its
known experimental values in the lower-energy region to its asymptotic
value (24). In order to fix both A1; and the nucleon pole position (w = 0 ~ W=
— M) we imposed a second constraint analogously to eq. (17). This relation

depends only weakly on the nucleon pole position but determines the Pomeron
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Table 1

Parameter dependences of the solution (the last both
columns refer to the second constraint in the sense of eq. (17)).

16 1 2
A zero of zeroes of =
q11 9 Va3 c11 Ni(w) WQUEASVII mmwbﬁs a

T

50000 0-21 0-22 1-84

20 4-0 6-3 8-43.103 8-52.103
30000 0-22 0-22 1-93 1-0 4-0 6-3 7-83-103 7-92.103
10000 0-22 0-22 2-14 1-4 4-0 59 3-50.103 3-42.103
30000 0-20 0-23 1-64 1-2 2-8 6-4 0-90.108 1-02.103
70000 0-20 0-22 1-43 14 30 8-8 1-77.103 2-00.103

/

—_— v

slope to be bp ~ 0.05 GeV-27 Tt is very satisfying that the free cutoff para-
meter A must be chosen sufficiently high (In A > 1) to get agreement with
the experimental data, (in particular the zero, the Roper resonance and g second
resonance at about 1750 MeV.

dy (w)

2f

rolx

1 2 3 4 5 2 7

Fig. 3. Experimenta] — and theoretical —— Phase shift 8,1(w) for the Parameter values
4 = 30000, 3;, — 022, 16/9 33 = 022,

Now a program is in progress, where improved inputs were used and the
McDowell Symmetry is taken into account, It would be of great interest to
impose also more constraints, i. e. to apply more subtractions, and to study
the behaviour of the extended solutions in the lower energy region.

——e

? A determination of the nucleon mass should probably need also the P33 amplitude
in the sense of g reciprocal bootstrap.,
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