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IMPOSITION OF CROSSING CONSTRAINTS
IN THE UNITARIZED 77 VENEZIANO MODEL! 2

HELMUT KUHNELT*, Wien

The present paper reports on some work which was done in collaboration
with R. Baier and F. Widder [1] and which aims at imposing unitarity
on the partial wave amplitudes that follow from the Veneziano model for nx
scattering. Crossing symmetry which is an essential feature of the Veneziano
model is violated, but by the use of exact conditions this violation is mimi-
zed. Problems of general interest are also reviewed.

L

a. Information on 7 Scattering from Recent Experiments

The extrapolation of the forward-backward asymmetry to the pion pole
n 7w p-—>atgn [2] is the most model-independent analysis available for 47
This gives a unique solution which Passes through n/2 near 720 MeV with
a width of about 200 MeV. A compliation of all available dats [2] shows
two sets of phase shifts which pass through =/2 at about 720 MeV and 900 MeV,
respectively. (Further discussion of these data is given by Morgan and
Shaw [3].) The second piece of new information is the ration dglag. Already
in 1968 Olsson and Turner [4] showed in the framework of effective Lagran-
ge models that low energy pion production is consistent with the Weinberg
value agfal = —35. Recently, Gutay et al. [6] — assuming a linear form
in s, ¢, u for the real part of the amplitude at low energies and imposing the
Adler consistency condition — werw able to determine ajlag = —32 01,
which might be weakended to —32 4 1"l with possible quadratic terms
included. Also Cline et al. [6] have deduced the ratio sin dofsin & = —3-1 &
+=1I'l in the range 300—400 MeV from the ratios o(n%0) [o(n*n*) and
o(7°7%/o(m*n~). On the other hand it has been argued by Clegg [7] that at
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least in 2~p — 7% the final state 7940 contributes more than usually accep-
ted and determination of phase shifts is obscured by this fact.

b. Low Energy Properties of the Veneziano Model for 77 Scattering

The one term Lovelace-Veneziano model [8] and the Weinberg current
algebra model have two essential properties in common: The existence of
the Adler zero (if x(m2) = 1/2) and the suppression of the I = 2 channel.
Both models are crossing symmetric, but lack unitarity.

The different isospin amplitudes may be written as

3 1
Vo(s, t, u) = M Vis, t) + Vs, u)| — M Vi, u)
Vis, ¢, u) = Vi(s, t) — Vs, u)
V2(s, t, u) = V(¢ u)

Vis, 1) = fX(afs) + alt) — 1) x B(l — a(s), 1 — a(t)),

where « is the real linear exchange degenerate g—f trajectory. The scale Vi
may be determined from the o width. Despite the fact that the Pome-
ron contribution is neglected in this model the evaluation of low energy
parameters makes sense. This point has recently been greatly Q,mimmg. by
Kugler [9], who has shown that is it completely consistent to _oE_m.w up low
energy zz scattering by resonances alone, (as it is done in the Veneziano mo-
del). With o,(0) = 0483 one gets for the scattering lengths ajfa? — —3-9
and (using f?/4r = 21) a) = 0:2065 m; and a2 = — 00535 ml

The Veneziano model being a pole approximation (and a solution of the
finite energy sum rules), the question of how to incorporate d.ro unitarity
arises. An approach to this problem will be described in Section III. We
turn now to a discussion of exact conditions for partial wave amplitudes.

II. CROSSING CONSTRAINTS

ﬁwrmg@mdw%mmsm symmetry of the scattering amplitudes, say Afs, t, u),
may be checked quite easily, the subject becomes quite Eﬁ.vzoa when one
uses partial wave amplitudes. The reason why one uses partial wave ampli-
tudes is the much simpler unitarity relation, which is of great advantage
in dispersion theory. Martin and others have derived a great number of con-
ditions on partial wave amplitudes for zz scattering in the w:grawmrw_m
region 0 <s < 4, which restrict the possible forms of amplitudes quite
29
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m:w._mmbm_%. Instead of giving a complete list of conditions derived up to now
I will rather give examples of the various kinds and refer for details to the
literature. (From now on m, = 1.)

1. Inequalities relating partial waves f{(s) for different values of s [10].
1
Examples are | foo = WA f0 + 2f3) is the 7920 - 7029 § wave amplitude

Joo(4) > foo(0) > fon(3189)

1 2 5 7
3 £3(0°2937) T J0(0°2937) — 1-229 f1(0-2937) > — f3(2-4226) —
9

4
= [2(0°4226) + 12552 f1(2-4226)

2. Relations between integrals and amplitude at a single point [10]:

4

1
r Joo(s) ds < foo(0)
2

3. Derivatives of partial wave amplitudes (113

‘ 1
Joo(0) < — " [2f00(4) — foo(2) — foo(0)]

Jools) < 0 0<s< 1127
fools) >0 1697 < s << 4
00 (8) >0 1127 < s < 1'697

The last three conditions imply the existence of a unique minimum of fo.
4. Inequalities concerning integrals only [12], e.g.

* ,
M ds(4 — ) (10s® — 325 + 16) foo(s) > 0.

Relations of type 1.—4. follow from the sole use of crossing symmetry and
the positivity of the absorptive part (Im fi(s) > 0 for s > 4).

5. Using also the nonlinear properties of unitarity Bonnier and Vinh Mau
[13] deduced foo{4) > — 4.

6. Equalities relating integrals over partial wave amplitudes [14] follow
from crossing symmetry alone. Restricting ourselves to § and P waves there
are five relations, for instance
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4
[ ds(4 — ) (273(s) — 573(s)) = 0.
0

7. Only recently Balachandran.and Blackmon [15] could derive several
infinite sets of integral inequalities for S- and P-waves only, using crossing
symmetry and the positivity of the | = 2, 4, 6, ... partial wave amplitudes
in the region 0 < s < 4. One of these sets of relations reads

ﬂ&m? — 8)[sM4 — s) — 25(4 — s)*/(n + 1)] foo(s) > 0,2 =0,1,2, ...
0

Relations 1.—6. for § and P waves constitute a set of about 50 constraints,
some of them have already been applied to model calculations of nn scatter-
ing [16]. It has also been shown that the nonunitarized Veneziano model
fulfills them, difficulties arise only when D-waves are included. It should
also be stressed that both ,,unitarizations proposed by Lovelace, K-
matrix unitarization as well as giving the trajectory an imaginary part above
threshold, fail in this respect [17].

III. UNITARIZATION

In introduction we have pointed out that scattering lengths may be predic-
ted from the Veneziano model and that they might be good predictions
despite the neglection of Pomeranchuk contributions. Lovelace [18]
proposed to identify the Veneziano amplitudes with K-matrix elements.
These may have poles on the real axis. We therefore have

1+ iKf(s) e
Sits) = Hmmwwn 1+ 21 /(s — a)fs f1(5)
K(s) Vi(s)

1—iKis) 1—i]s— 4)s Vis)
with
Kls) = |/ (s — )]s Vi(s)
and
fis) = V/sl(s — 4) e0sin 3, Tm(f)=1 = — /(s — 4)/s.

As all these relations are valid only for s > 4 one has to generalize them if
one wants an expression for all s. One can write

Ji(s) = V{(s)/(A — of(s) V{(s)) (1)



:.&S.o the imaginary part of o/ is given by unitarity for s > 4. (For simpli-
ety we use elastic unitarity only.)

Imgl(s) = ﬁ\m\@ —4), s> 4,
For the left hand cut discontinuity Lovelace proposed

Im gf(s 4 ic) = _\%\Aml 4), s < 0.

With this choice one can use an unsubtracted dispersion relation for of(s)
and one gets a unique solution. This solution, unfortunately, violates most
of the crossing constraints given in the previous section. Also the scattering
length af is changed by about 40 %, which seems to be very much for uni-
tarity corrections.

In our attempt [1] to impose unitarity we wanted to save crossing symmet-
Ty at low energy as much as possible. For this we had to evaluate the left
hand cut discontinuity near the physical region. In the region —32 << s < 0
where the partial wave expansion converges, we can use u

. Imfi(s + ic) = (2)

2 2¢ , 2s
== dt Py |1 4 @+ 1) Im f5 (t) Py |1 +-
= s — 4 t — 4

4 Iy

and from the definition of 01 (s)

1
2Im f¥(s)

Im gj(s) = (I —{1— [2Im f(s) (Re of(s) — 1/Vi(s)) 1231,

For convergence we write g subtracted dispersion relation

2 S — 8o ds’
0i(s) = ¢/(s0) + ———| |/ (s — a)js
. ! T V ! (s" — ) (s' — s0) * @)
o 4
- s — So Tmg! (s) ds n (s — s0) R];
s (8" — 8) (s — s0) w S — 85

-32
z

where the far left hand cut has been approximated by several pole terms.
The use of a subtracted dispersion relation is consistent with @M%EwnoSo
Regge behaviour of the partial waves, ie. the partial wave amplitude fi(s)
_u.wo.oEm asymptotically Vi(s) ~ sa@-1 o2 Furthermore, the Adler %o:-
dition remains valid if we choose sg = 1 and o/ (s0) = 0.
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We have therefore an expression for the unitarity corrections to the Vene-
ziano model which depend on the unknown constants R/; and s;. (The latter,
however, will be assumed to be fixed, because any variation in s; can be
compensated by a corresponding change in the R};). Egs. (1) and (2) are
two relations for the unknown functions of(s) and fH(s) in terms of the Vene-
ziano partial waves V}(s) and the parameters R[;. We have tried to solve
these equations iteratively by using as a starting point an approximate of
obtained by neglecting all contributions from the left hand region and by
demanding that the resulting f/(s) should fulfil the inequalities 1.—5. and
should minimize the crossing integrals 6. It turned out that one needs two
poles for each S-wave and three for the P-wave to meet these requirements,
but the range of these seven parameters is not very restricted. The following
additional requirements have therefore been made: .

1. As the experimental mass and width of the ¢ meson have been used
for the trajectory and the scale of the ¥ model we require that the output
me and I'y agree with the input. This fixes two parameters.

2. ag has been fixed at —0-053 (the ¥ model gives —0°0535) because uni-
tarity corrections tend to increase the S-wave scattering lengths and we
assume a smaller change in the 7 = 2 case than for 7 = 0.

3. As one finds that all I = 0 phase shifts go through =/2 for s > 650 MeV,
we have selected four possibilities corresponding to a resonance at mg =
= 725 MeV, 850 MeV, 900 MeV and 1150 MeV and determined the remaining
three parameters according to the procedure stated above.

The solutions show the following features: The I — 0 S-wave resonates
at the chosen energies with resonance widths 290, 440, 490 and 700 MeV,
resp. aj is always 0-224 which means that unitarity corrections to the scattering
length are of the order of 10 %, and alfa3 = —4-2. a! has not been changed
by this procedure: a} = 0:0414. The I = 2 wave is always negative in the
region under consideration and falls down to a minimum of —12° to —15°
in the g region and increases slowly for increasing energy.

It is clear that our solutions could be still improved by further iterations
but to judge the quality I have to mention that the crossing integrals 6. are
fulfilled with an accuracy of about 10-3 compared to about 10-2 in the Pade
approximation to the ®* theory [19] and 10! in the Lovelace unitarization
[18]. With respect to the other constraints the requirement of a minimum
of foo for 1'127 < s < 1'697 seems to be one of the most stringent ones.
A further check that the narrow resonances are transformed into finite width
resonances in a correct fashion without disturbing the low energy contri-
bution to the finite energy sum rules consists in demanding that the moments

50
ST = [ds(s — 4)n Imfl(s)

4
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and
_ 50
S = %%@ — 42 Im¥](s) n=20,1,
4

I=0,1,2,
should not differ very much. This is indeed the case for I — 0, 1 and implies
for I = 2 that sin??2 should be small.
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