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AREAS OF DEFINITION FOR RELATIVISTIC PARTIAL
WAVE AMPLITUDES

MIKULAS BLAZEK, Bratislava

The areas of definition for relativistic two-body into two-body partial
wave amplitudes, previously established, are further analysed and some
details are added. Several special cases are discussed and the families of the
physical cuts are described for reactions involving only stable particles.
‘Additional features relevant to the understanding of the behaviour of the
physical cuts are elucidated. .

I. INTRODUCTION

Experimental data concerning the behaviour of the strongly interacting
particles are analysed often in terms of partial wave amplitudes. If experiments
are available both in the low-energy region and at medium energies, the
inelastic processes are to be included into the theoretical models which try
to explain the data. This fact then leads to the investigation of the basic
properties of a typical partial wave amplitude of the form
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where a two-body into two-body process with any admissible stable particles
is understood,

my + mg —> mg + My. (2)

The areas of definiticn for various quantities have been already investigated
many times. Let us mention here for instance the investigation of the prop-
erties of the Feynman integrals performed by Wu [1], the investigation of the
,matural” positions of the branch cuts by Hwa {2] and the more involved
treatment by Eden et al [3]. In what follows the areas of definition of a partial
wave amplitude (1) are further investigated and some special cases are discus-
sed. The present analysis represents the continnation of our previous paper
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[4). In general, the inelastic case involves a sort of continuation and a more
detailed discussion of this case can be found also in refs. [5] and {6].

1n relation (1), s = — (o1 + pe)? is the total energy squared in the direct
channel, t; is the (negative) momentam transfer squared & = — (p2 — Pa)?
and in the c. m. system we have

1
s == lwlmlmm. 48X — x + h(s) cos 1, 3)
s
where
h(s) = (s — s1)M3(s — s2)!/%(s — s3)1/2(s — sa)12 =
— [(s? — Z + %)2 — ds(sd + V)2, (4)
and ’ |

MH§M+§W+§M+§M,
e = (m3 — m3)(ms — my),
L — (ot — md)(md — ),
) = (mimd — mImd)(m} — i — m; + m3). (3)

In relation (4) the thresholds are given in the following way
8y = (my — Mg)?, 82 = (mz — mu)?, 83 = (my + ma)2, 8y = (my -+ M) (6)

The momenta of the external particles are denoted by pi(i =1, 2, 3, 4),
cos 9 is cosine of the ¢. m. scattering angle in the direct channel. We consider
» = Re (cos ) and ¢ in relation (1) as real quantities which vary in their
physical values

—1 < Refcos ) € + 1, (7)
ty <t < O,

i, being the threshold value in the t-channel. As far as the inequalities (7)
are fulfilled, the partial wave amplitude (1) is not defined in the areas de-
termined by the condition that the denominator in rel. (1) vanishes,

y t—ts =0, (8)
t, given by relation (3). In the following section relation (8) is analysed and
for some special cases its mapping in the complex s-plane is described in
more details. .

In the next section, the procedure for the elastic case is reviewed (compare
with MacDowell, ref. [7]). In the third section the basic relations for the
inelastic two-body processes are given and the fourth section deals in more
dotail with the following special cases:
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y+ N—>n + N,
4+ N>o + N,
y+ N->o +4,
n+x - N 4 A.

All these processes, as they stand, are considered as the s-channel ones and in
the two last only the influence of the t-channel forces is included into the
discussion; the w-channel forces might be considered after performing the

necessary formal rearrangements. The last section summarizes the basic
results. ,

1I. THE ELASTIC CASE

We start with the consideration of equation (8) for the elastie scattering
case, as e. 8. T+ N >z + N. In this case t; = — 27%(1 — cos 9) and with
respect to eq. (8) we have

t = — 292(1 — cos V), 9)

3
cos=1-+—"" 110)
242
where ¢ is the momentum in the ¢. m. system,
2 —sX+ =

43

?

1
¢ =l — O+ s — M = =

M(u) is the mass of the nucleon (pion) and, in this case, X = 2(M? + ),
% == (M2 — p?)? and the quantities » and 2, given by relation (5), vanish.
Let us look in the complex s-plane, s = T iy, for the lines where

Im(t) = 0, (1)
t given by eq. (9)- Since cos 9 is now kept real, the condition Im(g?) = 0 or
ylat + g2 — %) =0, (12)

follows from eq. (11). On the other hand, if we are interested in the curves
where

Im(cos ¢) = 0, (13)

(for ¢ real), the condition Im(g~2) = 0 is obtained using relation (10). Since for
any finite and non-vanishing complex number ¢%, the condition Im(q?) = 0
is equivalent to the condition Im(q-2) = 0, it follows that in any two-body
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elastic scattering case both sets of curves (11) and (13), see Fig. 1., are identi-
cal; the common set is given by eq. (12) and it is seen that it consists of the

whole real s-axis plus a circle around the origin with the diameter |s| = ﬁ\ =
— M? — u?. One has then to determine that part of these curves where the
inequalities (7) are satisfied.

Fig. 1.

fy= Im(s)
ts real const

T

xx Re(s)

A \\82?%& const

The area ABCD where t — ts = 0, rel. (8), together with two sets of lines where
cos = real const. and ¢ = real const.

1II. THE INELASTIC CASE

The process with arbitrary stable particles, relation (2), is now considered.
The momentum transfer squared s expressed by ralation (3) is used in eq.
(8),t —ts = 0. Trom this relation we have

where
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C = (22 — ¢+ (22 — y2)(42? — 6x> 4 X2 — 44 4 2x%) —
—4pdx — Z) — 22(2v + x2) + #2,

D = 2yf(a2 — y)(@x — X) — 282+ o(Z2 — 4 + 2%) —
— 2y — %X

If a given value 2z is prescribed for Re(cos ¢) and if Im(cos #) = 0, the
equations

A? — B2 = 22C, (16)
24B = 22D,
follow from relation (14).

Eliminating 22 from egs. G@?Soogmmb erampzpiob wkﬁ@\b?ﬁ\wwvﬂ
= 0, or ’

a(g?)? + by + ) +d =0 17

which gives the (off the real s-axis lying part of the) lines where { is real and
fixed and 2% varies through the real values. .

The equations (16) and (17) have been discussed with more detail in ref.
[4]. For the sake of brevity we give here only the expression for the absolute
term. in eq. (17),

d = [2? + o2t — ) + wifatt — 6 — 27) -+ 2ty +
4 Z[t(=2 + 2v) — pE — 2xA} — w(ut + »)}. (18)

1t is worthwhile to note that if y = 0, we have further

d4 dc
d=Al2—C—4A—|’
dx dx
d
A, C given by eq. (15), and from the condition d = 0 we obtain i (cos® &) = 0.
x

The last equality implies that the branches y = y(x) of the curve (17) intersect
the real s-axis at the points where cos? &, varying along the real s-axis, has
its extreme values. This fact is demonstrated, e. g., in Figs. 9 and 10. As far
as the zero points z = 0 lie on the real s-axis, the curve (17) passes throught
them, as it is seen from eq. (18).
With

R=a2+9y2— % (19)

the eq. (17) might be expressed in the form

R{datst + 22t(R + 2t — 2) — 122t — NR + %) +
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+ R2t + A2 B + 2%) + 2R + #)(2t — D)} +
4 W(R -+ 0)[4a? + 4w(2t — Z) 4 4t — )4 X2 — Ry =0.  (20)

Now it is seen that if v = 0 (as, e. g., in the elastic case), the well known circle
given by R = 0 is to be taken into consideration.

For a given value of the momentum transfer squared, £, the part of the line
off the real s-axis, where Im(cos #) = 0, might be determined from eq. (17).
Only that part is to be taken into account where 22 < 1. However, it turns
out sometimes that as far as the integration in the partial wave amplitude (1)

+1
is performed along the physical angles, the integration path [ ... d(cos 9) is
1

composed of some disconnected parts (c. f. Figs. 5, 6, 9).

If the momentum transfer squared, {, is eliminated from egs. (16}, an equa-
tion is obtained for the curves, where cos # is real and fixed; we give here only
the equation resulting for 2% = 1,

AR? + v(2x — Z)R + 2 = 0. @1

Eq. (21) gives the dependence y = y(x) for the points off the real s-axis where
2=1 and t is real and varies; on the real axis their location z1,2 = z1.2(t) is
given by

ta? -+ (2 —tE 4+ ) Fut v =0 (22)

In the next section, some branches of the aforementioned equations are
considered for special processes. For a fixed ¢, the connections of the branch
points or the branch lines are called ,,physica «“ if the scattering angle varies
through the physical values along them. In the general case (Zxdr = 0),
egs. (17) and (21) have no common solution, thereby proving essentially
the existence of the areas where a partial wave amplitude is not defined. In
all figures (except Fig. 5) the singularities arising from the direct s-channel
are omitted and the areas under consideration are hatched; only qualitative
schemes are drawn. In the computations the following numerical values have
been used: the mass of the nucleon squared, M2 — 45°16; the mass of the
A(1236) squared, A% — 77°97; the mass of the g-meson squared, mg = 30'25;
all quantities are expressed in units where the pion mass g is unity and also
# — « = 1. A means the N, resonance of the zN-system.

Before entering into details we recall the main results of ref. [8]: The sign of
cos @ is the same at the complex conjugated points on the same sheet of the
s-plane; on the real s-axis, along the curve x = z(t), given by eq. (22), cos ¥
changes sign at the thresholds si(i = 1, 2, 3, 4) given by eq. (6); at these thres-
holds, the curve ¥ = z(t) has its extremes. By means of the function A(s).
eq. (4),2 two-sheeted Riemann surface can be introduced, the two sheets being
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connected along the real s-axis between the points 81 and s: and between §3
and s1. Then the sign of cos @ at a point on the first sheet is opposite to that
on the second sheet. The introduction of this Riemann surface is understood
also in the next section and as far as it is not stated otherwise, the values
of cos & are understood to be those on the first (physical) sheet. '

1V. EXAMPLES AND SOME DETAILS

1. The first two examples represent a special case of the reaction (2) where
me = ma and therefore 4 = 0.

(i) The wrceowg&ﬁoﬁos of pions on nucleons, ¥ +N->=n+ N

In addition to the set of points arising from the t-channel continuum, men-
tioned in ref. [5], one finds that the area under investigation lies between the
curves given by egs. (21) and (17) for t = 42, and to the left from their points
of intersection P& {x = M2 32, y= T i (M2 — p?)2]. This area is
very narrow.

From the pion pole term & = 2, in addition to the point s = M? (compar¢
with Fig. 9 of ref. [5]), one obtains also a branch cut which lies partially off
the real s-axis (for a qualitative picture see here Fig. 2), Namely, the whole

0
curve arising from the integration .,‘ ... dz for this pole term? = pis, contracted
-1

into the point s = M2, on the second sheet; at the point s = M2 on the first
1

sheet, the whole integration path _. .. dz is contracted which emerges through
0

Fig. 2. The points where ¢ — t, = 0 for the process ¥ 4+ N-=n+ N
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1
this threshold from the second sheet. The other part % ... dz, on the first
(4]

sheet, begins at § = M2 — p2 (where for ¢ = u* we have cos 9 = 0), conti-
nues above and below the real s-axis up to the point & = (M2 —p?),y="0
and then it contains the whole negative real s-axis. All three curves, shown in
TFig. 2 are close to the circle R = 0.

The areas of definition arising from the u-channel are identical with the
location of singularities of ref. [5]; namely, from the continuum % > (M + w2
a cut arises for — 00 <7 < wu; wu = MM + p) — Mpy. The crossed
nucleon pole term % = M2 has two contributions in the s-plane: The integration

+1
path of the integral _. ...dzof the first (righthand) contribution is all contracted
1

at the point § = M2; however, the integration path of the second (left-hand)

+1
contribution of the integral .— ... dz is extended along the whole negative
1
x-axis.
Using the expression for the coefficient d, eq. (18), the point zz, Fig. 2,
(the intersection of the curve where t = 4% and 2 varies with the negative
part of the s-axis) can be determined. We have obtained

5 w2 o 3(3 7 2 b
En\%+\wl\i\\\+\\l ol =1} 23
g 2 M8 (8 ot T\ )
e
The value (23) i8 different from — { M2 — S ) which gives the intersection

of the curve where cos? & = 1 and ¢ varies with the negative x-axis (cf. Fig. 2):
this fact demonstrates that the area where a partial wave amplitude is not
defined, is present also in the photoproduction process under investigation.

(ii) We consider the process % -+ N —» o + N, where o represents a strongly
interacting pion pair with quantum numbers [6JF = 010+ and with the mass,
say, about 400 MeV. For simplicity we treat o as a single, stable particle; its
mass is denoted by me.

As to the zero points of the Mandelstam, denominators arising in the s-plane
from the t-channel, we have the following picture:

The curve where cos? 9 = 1 and t varies along the real values has the form
as it is a.:p_._ga.:s_% seen in Fig. 3.

+1

The integration path % . dz corresponding to the beginning of the t-channel
a1

continuum, t = const. = gu2 = to (see Figs. 4a, b; the process shown in Fig.
4a does not give rise to an anomalous threshold in the ¢-channel) starts at the
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points T,, T2 where cos 9 = —1 (Figs. 3 and 5); it passes along the real axis
from Ty and from T to the point 7. From T it lies off the real s-axis and
itersects with it again at the point T’ (Fig. 5) and then it contains the whole
negative part of the real z-axis. For t =to + & (¢ small, real, positive), the
corresponding point 7" is shifted somewhat to the right from the position

y=Im(s)

cosPe1, t vories

costher] x =Re(s)

Fig. 3. The curve where cos? = 1 and ¢ varies for the process & 4+ N->o+ N

Fig. 4. Some basic diagrams for the process
x4+ N—=>o+ N.

given in Figs. 3and 5 and the corresponding point 7" lies & little more to the

left from the position given in Fig. 5.
+1

We describe now the integration path . .. dz for the pion pole tesm, t = p?
-1

fig. 4c, on both sheets; this result has been obtained after varying slowly the

masses involved and taking into account the changes of sign of cos ¢ at the

thresholds.

On both sheets (see Fig. 6) this integration path is composed of two parts;
the first one passes from the points 4, A* (with the subseripts corresponding
to the sheets), where cos2 ® = 1, to the point B. (In our example (i) this part
is contracted into the threshold point s = M2). The gsecond part passes from
B’ (at B and B’ we have cos & = 0) off the real s-axis to the point € and then
it contains the whole negative part of the real s-axis. The physical connection
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of the branch points, as far as ¢ = p? and cos & is real and —1 € cos & < +1,
are shown in Fig. 6. We emphasize that on the first sheet only the positive
values of cos & are met and therefore it is erroneous to perform the integration

ywIn(s)

te9put
{cosf vartes) g
v/ it
- 20 g \ os ¢ vorves)
/ AN

(cos¥ varies) ./

\

Fig. 5. The points where & partial wave a

mplitude of the process 7 4+ N >0

4+ N ig not
defined; cf. rel. (8).

+1
_. ... dz for the pole term ¢ = u? on the first sheet. This point might be con-

1
fronted with several references, where its importance was not recognized.
A similar result is valid also for the pion pole term ¢ = prinm + N>+ N

(and in other cases). Thus, in Fig. 6 the lines 0:02B;B14;, (— 02) C-B,B:147,
+1

\mwwmmeH (— o01), and x_NmewQE_ correspond to the integration A ... dz
-1
(t = p?) along the physical angles.
Tor the zerc points of the Mandelstam denominators arising from the
u-channel we have the following results:
Frcm the continuum beginning at uy = (M + p?), Fig. 4d, an arca arises,

where a partial wave amplitude is not defined. This area lies between a part
of the curve «) where ‘cos?

9 — 1 and u varies and where ) uw = (M + w)?
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Fig. 6. The physical branch cuts of & partial wave amplitude for the pion pole term

= p? in the process aN - oN (or 6N - oN, etc.). The lines with the same sign represent

the physical continuation of the cuts. On the second sheet the sign of cos & is opposite

to that on the first sheot.
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Fig. 7. The curve where cos2 & = 1 and ¢ varies for the process yN = ed.



and cos? & varies, compare with. Fig. 5. One ,,corner* of this area is at ths
point x4 = (M3 4 pmd)|(M + p) — Mpu, y =0, and it contains also a part
of the real s-axis, — 00 <{¥ < ¥8 = (M3 + pPme)[(M + me) — Mmyg.

The exchanged nucleon pole term % = M? ccntributes by a cut between the
point Uz and Ur and between s = 0 and s = — .

2) The following examples represent two special cases, when, off the real
s-axis, the curve cos? & =1 and ¢ varies consists of two parts, one part lying
inside the other and the t-dependence on them is opposite. This fact then
implies that the physical lines for the higher values of the momentum transfer,
t, tend in the first case to the outher part from outside while in the second case
to the inner part from inside (if all real values of ¢ would be allowed, then the
partial wave amplitude would be defined only in a narrow gap between the
two aforementioned parts). In what follows only the influence of the t-channel
forces is analysed.

(iii) The photoproduction of the vector mesons, y +N—>g+ A. The

y=In(s)
Y224
\\ /V
z S
.l .
L G
f — h Y
[ — N\
\\\‘ N\
/— 2\
o —\ «bpd, ol rones
=
£ |
= A
¥l twries — == i N —\
=—
iy
Y AN
7 F s
7
R B = p
Fe 1) —\ x4 F-.Q 1287 TRef)
—\ (cos#t=0)
=t s 22
. —F
— ~
. T 7
== ~d
= “V
N— — tebpl cos”s vories
& A 4
N T 4
D~ E
N e .
mﬂ L\
~—= —
T —————— ="

Fig. 8. The area where t — s = 0 with 4p? < t < ©, 0 < cos? & < 1 for the process
yN — g4

£+ 4u? cosd vorves

asv-+

x=-00 -153 /

w7

cos ¥ vories

+
osd=+1 \ \ o\

a,

remon / U

Fig. 9. The physical branch lines (0 < cos? 9 < 1) for y+N->ep +

Fig. 10. The dependence cos & = f(x) on
the real s-axis for £ = 1, 4, 5, 6 and Tp? of
the process ¥ 1 N —>g+ 4. The inte-
gration is to be performed only forcos? ¥ <
< 1. The physical branch lines intersect
the real z-axis (compare with Fig. 9) at
the extreme points of the aforementioned
dependence.

1287

b,

A if: a) t = 43,

b) t = 5p? (the first shoet is understood). Another possibility is obtained by ¥y > —Y-

st

n\ll s+ 1

|—— x =Re(s)
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y<Inmts)

sl

/\ 82\..L tvones
X

\

e-3T coste-l —— 1= .
[
—_— e

__ . cosver! .\'Tenx Re(s)

X 2417

Fig. 11. The curve where cos? # = 1 and ¢ varies for the process 77 —> N4.

x=6
{cosd=0 for t-45%)

Fig. 12. The points where ¢ — t, = 0 for the process a7 —> NA.
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curve cos 9 = land ¢ varies has the form of Fig. 7. In Fig. 8 the area is seen
where the partial wave amplitude (1) is not defined, ¢t — t; = 0, using in rela-
tion (7) the threshold value to = 4u®. The physical branch lines for ¢ == 442
and t = 5u? are shown in Fig. 9. This tape of connections may be easier
understood if the dependence cos § = f(x), Fig. 10, is taken into account. As
to Fig. 9, the continuation of the physical connections with —1 < cos & < 0
can be fcund on the second sheet.

(iv) The process = + 7> N + 4. The curve cos? & = 1 and ¢ varies is shown
in Fig. 11 and the area where t — t; = 0, using in rel. (7) to = (M + W =
— 596, is seen in Fig. 12. eomgwma with the physical comnections for some
constant values of &.

(v) In addition we give Fig. 13, where the qualitative picture of the area
can be seen where t — t; = 0 for the reaction w +4 >0 + N.

y=Imis)

costfuel, tofu®

cos?del, t voes

ARN
t

iz tIad | teat 79 5 i a9 103Use | %24 xRels)
cosibwones | cost! varies feastha (asv] feosv=]
teut) op?) top?)

Fig. 13. The qualitative picture of the area where [ — &5 = 0 for the reaction = -+ A

— ¢ + N. The area arisos for 9u? <t < 0, 0 < cos? < 1. Also the physical branch

line for the pion pole term & = u? is seen (the other part covers — © <& < 0). The
mirror image is omitted.

V. SUMMARY

Tor some relativistic two-stable-body inelastic processes areas have been
described where the Mandelstam denominators of the partial wave amplitudes
vanish as far as the momentum transfer squared and the scattering angle
have physical values. If the procedure is used that the continua in the crossed
channels are replaced by (stable or also unstable) objects (the so-called particle
approximation), instead of the aforementioned areas only some isolated phy-
sical branch cuts are met in a partial wave amplitude [9]. Tor a given value
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of the momentum transfer squared, the location of the physical branch lines
can be considercd as one indicator about the importance of the corresponding
exchange. On the other hand, if the physical branch lines are deformed (the-
reby involving & continuation, €. &-; in the complex COS 9-plane), the location
of the branch lines with respect to one another, can be exchanged and the
considerations concerning the relative importance of the corresponding ex-
change might lead to quite different conclusions. However, if any of the objects
snvolved becomes unstable, the wr%mmoa cuts are deformed and they are
pm%n:bmeiam:% Jocated with respect to the real s-axis. A forth coming paper
will be devoted to such a case. If in the complex s-plane the integration along
the physical branch lines is wonmoaaom. no kind of continuation in the complex
cos 9-plane is necessary; this fact might be suitably used if the particle ap-
Eom.:nwiob were applied in & dynamical model of strong interactions.
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