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INFLUENCE OF SIZE EFFECT UPON THERMAL AND
ELECTRICAL CONDUCTIVITY OF THIN FILAMENTS AND
WIRES WITH COATING

JULIUS KREMPASKY, PETER DIESKA, Bratislava

The paper deals with the influence of the size effect upon the thermal and
electrical conductivity of thin wires and filaments, coated by another layer
of thermally or electrically conductive material. An ,,exchange* of phonons
or electrons at a boundary is considered. It is shown that the surface layer
can exert a considerable influence upon the values of thermal or electrical
conductivity in the range of size effects in uncoated wires or filaments.
By this fact a change of transport parameters, observed after a period of
time, as well as a change of these parameters caused by an appropriate
coating can be explained.

1. INTRODUCTION

A size effect arises at low temperatures, when the mean free path of phonons

.or electrons is comparable with at least one dimension of a sample. That means
‘those transport parameters as thermal and electrical conductivity, respectively,
.depend upon the dimensions of the sample (layer thickness, diameter of wire
etc.). The first papers dealing with this dependence were published by Casimir
[1], de Haas and Biermasz [2], but the problem was formulated more exactly
for the first time by Fuchs [3]. His paper and the following papers, concerning
the electrical conduetivity of this layers and wires [4—6], are based on the
solving of the Boltzmann equation at appropriate boundary conditions.

A phenomenological parameter, characterizing the so-called specular reflexion
is introduced into the boundary conditions instead of a detailed examination
of electron scattering at the sample surface. Ziman [7], Berman et al. 8],
Gurzi, Sevéenko [9] and others used this concept when solving the problem
.of the transport of thermal energy by a crystalline lattice.

All the above mentioned papers solve the problem of insulated thin layers
and uncoated wires. This is justified in the case of electrical conductivity as the
base under the thin layer can be made of an almost perfect insulator. However,
there is no perfect thermal insulator, hence there is not much use in solving
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the problem of heat transport by a thin layer if we do not take the basis into
consideration. Conditions at the boundary of two thermal conductors which
enable a mathematical solution of the problem of thermal conductivity of the
system thin layer — base, thin wire — coating etc., are formulated in paper [10].
Tt can be shown [11] that analogical conditions can be used also when solving
electron transport — the corresponding coefficients of, reflection’‘ and , trans-
mission® are connected with the potential barrier existing at a boundary.

This paper deals with thermal and electrical conductivity of thin filaments
or wires coated by a thermally or electrically conductive layer. It can be either
an artificial layer or a layer arising at the surface of any material by an ab-
sorption of molecules of the surrounding medium. It is shown in some papers
(e.g. [12]) that there were changes of thermal conductivity of thin filaments
caused by a surface modification and changes observed after period of time.
We assume that in the latter an observed layer can play a significant role.
‘We shall show that the influence of such a layer upon the parameters of the
transport in the range of the size effect can be considerable also at a relatively
small thickness of layer. ,

The Boltzmann equation for the stationary-state distribution functions
of phonons (electrons) was used as the starting equation for the analysis.

2. BASIC EQUATIONS AND BOUNDARY CONDITIONS

The Boltzmann kinetic equation for a set of particles or quasiparticles in
a relaxation time approximation is of the form

dk f—1fo
<m§&¢g+\|m§&.~aﬂ —p——— (1)
dt T

where f = f(r . k) is the distribution function, fo(k) the equilibrium distribution
function, v the velocity vector, k the wave vector, r the radius vector, v the
relaxation constant. In the case of electrons in an electric field of strength E,
we can write dk/dt = eE[k, where k = h/2rx and h is the Planck constant,
if the relation between their energy and wave number k is of the type B = 7i2k?/
/2m. In the case of phonons dk/d¢ = 0, but the first member in equation (1)
gives
0

grad, = (gradr)r=const + grad T Mm .

We assume that the values grad Tg(r, k) and Eg(r, k) where g(r, k) is defined
by a substitution
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fr . k) = fok) + g(r, k) (2)

are small. Then equation (1) will have the form

<m~.@9_\.+ﬁ+<kﬂo, 3)
T

where A = grad T9fo/oT for phonons and A = eHofo/oE for electrons. Based
on this form we can solve the problem of electrical conductivity and thermal

lattice conductivity simultaneously. For the sake of simplicity we shall later
write only the relations for phonons.

g
2

D
\ Fig. 1. Schematic diagram of a section of
/V/ a thin, filament wire with coating.

We assume the thin filament to be in the z axis, Ry is its radius, Ry is the
outer radius of the coating (Fig. 1). To be able to formulate the conditions
at the boundary and on the surface we must divide the phonons into:

1. Phonons characterized by the g; function — such are all phonons in the
filament (each of them can reach the boundary regardless of the direction
of its velocity).

2. Phonons characterized by the g, function — such are phonons in the
coating, the velocity of which has such a direction that they do not reach the
surface of the filament (Fig. 2). Projections of their velocity vectors to the

Fig. 2. Distribution of phonons (electrons)

in a filament (wire) and in a coating from

the standpoint of application of the
boundary conditions.
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plane perpendicular to the filament axis has an angle « in the intervals {— oo, o)
and (m — ag, ™ + %), where ap = arc cos ’afRE.-

3. Phonons characterized by the g, function, i.e. the rest of the phonons
in the coating. For one part of them the projection of their 4&8?% .<mcnoum
to the plane perpendicular to the filament axis from the angle as in the interval
(o, © — g, for the other part in the interval (—= -+ a0, \.§v. N

Hence the boundary conditions for the above case (according to conditions
formulated in papers [3] and [10]) can be written in the forms:

R=R: gs- = Pagar (4a)
g5 = Paga+ (4b)

"R=Ri gos= Pags- + Qg1+ . (5a)
g1- = Prgi+ + Qgs- (5b)

Quantities marked by (—) differ from those marked by (+) by a substitution
between o; and ‘g or between ag and —ag. The coefficients P> and Py
characterize the specular reflexion probability on the mﬁm@mmu or at the boun-
dary, respectively, the coefficient @ characterizes the probability .o». the electron
or phonon transition across the boundary. Explicit expressions for these
coefficients according to the state of the surface and the cozs.mm.w% as well
as for the angle of incidence and the wave vector respectively, are In paper .TSA
We shall assume throughout the following calculation that these coefficients
are some constants, characterizing a given system. . .
We wish to point out that conditions (4) and (5) can be considered only in
the case, when the wavelengths 4, which characterize phonons or electrons,
are much shorter than the dimensions of a particular system. It can be easily
shown that in any practical and real case this condition is always fulfilled.

3. SOLUTION OF EQUATION (3)

According to Chambers [13] the general solution of equation (3) can be
written in the form :
|Rs — R|

— —vA{l L exp|— s (6)
g(R,v) v P on

where vr, Rs and R are m:.&.mc_aoﬁm of the vectors v, rs and r into .ero plane
@o%ab&oc_ms. to the z axis and where r; is the radius vector wm a .HgoE.a on .ﬁ:w
surface, which is obtained by shifting the velocity vector against its direction.
As we are intérested in longitudinal conductivity only, we can put E = .mwd
grad T = oTjoz and write the expression vA in the form v(8T0z) (fo/eT) for

'
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ﬁro:wsm and in the form ¢E.9fo/0F for electrons. Thus we get for the above
mentioned functions g1, ¢, ¢5 the expressions

Rsin oy + (R? — R? cos? )12

g1 =wvid1cos f1 {1 + Crexp| — 7
Lisin py (72)
I .m i N - N
g = vads cos iz {1 + Caexp| — sifig +1Fs — B ool (7b)
Nm sin mw

az € (—ap, opy and ag € (T — g, T -+ )

” nNW i w - N A v
go— = Qm\mm (s8] xww 1 -+ le exp i — s T me R cos? Rmva\w Aqov
Nw mmb %w

2 € {—m -+ ao, —0)

B si (R — B cos? as)l
Joe — vadsconpal1 - Qm+ exp | — sin ag — (R} — R2 cos? ap)1/? i
I sin f2

’

oz € o, T — g

where I; and I, are relaxation lengths. Index 1 denotes the filament, index 2
the coating. The angles a1, a2, f1, f2 are interrelated by the law of refraction.
To respect this relation would complicate very much the computation and
therefore we shall assume that phonons and electrons cross the boundary
without changing their direction and therefore o = a2 and f1 = f2. Hence
according to [10] P12 = P2 = P holds.

Writing
2(R; — R? cos? a)12
—q =
Iy sin f
5 2(R% — R? cos? )12

lasin f

(R — R? cos? «)V2 — (R} — R? cos? «)1/2

—C =

Iz sin \w

and using the conditions (4) and (5), we obtain for the constants Cy, C2, Cys
and C,_ the following expressions
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Q A
—(1—P 22 (1 — &) (1 4 Ppe) + QPo o
(0= P+~ [ = e (L Poe) + QP
O = ———— = (8a)
: Q*Po
1 — Pe® — eat2c
' 1 — PP,y e
\ 1 P,
C,=— ——— (8b)y
1 ‘muo@c
Q 4, 4
P— 1+ Pe(Po— 1)+ (1 —en) +-Qe(l —e¢ + Poef)y
” 1—-Per | A %
QN+" — s
@ch E
1 == NU‘Nuc et — ma+mﬁ

1 — Pe®
) (8¢)s

QPoes [ 4

.~u=|.~+mvc®aAmv|.:|T||.||l ||:.|®@v\_1©®a

” ullmuaﬂ nAm

e ————————————— = L (sd)
Q2P
1 — PPge* — eotec
1—-Pe?

where Py means the coefficient of ,,reflexion’ on the outer side of the coating..

4. THERMAL AND ELECTRICAL CONDUCTIVITY

The total thermal conductivity of the filament-coating system is @ombo&..
by the expression

§ = R + .aﬁww — Ry »mu ().
29 (%3

where 4; is the thermal conductivity of the filament, A the thermal conductivity

of the coating. These thermal conductivities can be calculated by means

of the g1, gs, g+ and gy functions. As the functions characterizing the coating:

are complicated, we shall do the computation only for the filament.

The mean density of the thermal flux through the filament is defined by the
expression

R

1
je2mr dr, (10)-

{Jz» =

2
Ry |
b
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where
Jo=—= horgi(a, f) k2 sin « cos B dk df da.

The computation can be simplified by assuming the special cases: @ — 0 and
Q — 1. In the first case we use the Taylor series of the function Ci(Q) in the
neighbourhood of @ = 0 and we take into account only the first terms. To
simplify we shall denote the first member in the relation (8a) by C1o, the second
by 6C:, so that ¢, = C1o + 6C1. When we substitute this expression into the
function (7a) and then into the relation (9), we shall find that the ratio of the
thermal conductivity of the coated filament and the thermal conduetivity
of the bulk material can be expressed as

/2 nf2
m&w ‘, mms_.moo%mmuwax
m

¢

A A 12
1 Mo

mJS mJB q.n.mww.

Ri
0

(R? — R? cos? «)1/2 —w sin a

- ———] da, (11)
lysin'p {hsing

X exp|—

where Ai0/A,, is the ratio of the thermal conductivity of the uncoated wire
and the bulk material calculated in paper [5]. We shall denote the difference
of thermal conductivity between the coated and the uncoated filament by

821 = A1 — A10. Then the relation (11) can be written in the more simple form

%m&,
T =D (12)
.
where
Nw-~ 2 T2
12
P = -\ RdR sin p cos? fdf | 6C1 X
_wRy
0 } [} c .
(R? — RZ cos? a)/? R sin «l
X exp | — - —tch)———1 da.
Iy sin lisinf

For Q > 1 we shall do the computation in a similar way, only the Taylor
series is in the neighbourhood of @ = 1. We shall present the results of only
more interesting cases, in which (Rz — Ri)fla € 1 and (B2 — Ri)fle < 1.
We shall obtain
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R — Ry

. -kl Q—0; p=x0 (13a)
2
Z10(P A10(0
Q-1; pw LU (13b)
NHS »JB
R:— R AsQ ol P)
‘m'\\_.Awm Q—0; p = 2 wlllw%‘n (14a)
Iz Ai(1 — P) .
As A10(0)
4= P=y '
where
A10(®) _ 142 NA.NN — RD) _ wﬁ.mn.m — R1)2 y
I 1—=x I o2
4 a2 l ®
X i i In ! 141059 — (1 — a2 > migmtlnm| —
(1 — =)? 2(Ry — B1) 1
9 [8(Ry — R1p] 1+ a4 1122 4 2°
15 I (1 — z)p v
hence
— 3(R: — Ry)? l
A(0) _ 2(R. Ry 3K, 1) " 1 4 1059} —
A h 32 2(R: — R1)
2 |2(Re — Ri){3
15 Iy '

Writting R — B1 =@ (thickness of the planparallel layer) and x = ¢,
the last two relations are identical with those derived in paper (3).

5. DISCUSSION

Not knowing the coefficients P and Q, we are not able to analyse quantita-
tively the obtained results, yet we can deduce from the derived relations some
interesting conclusions. The authors regard as very- important the results
in (13), valid for a vera thin coating. They are written in the form of the
ratio of thermal conductivities, but as mentioned above, they can be applied
withhout change to electrical conductivities.
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Tt is evident above all that for the case of @ = 0 there is no contribution :

to the size effect observed on an uncoated wire. That is a selfevident conse-
quence. But in the case when ) — 1, i.e. the phonons are able to pass from
filament to coating or vice versa (or the electrons from wire to coating and
vice versa) almost without limits, the ratio of the thermal (electrical) conduc-
tivity of a thin filament and the thermal conductivity of the bulk material
can be expressed according to the relation (13b) by the relation

 EolPo),

~ s po<l (15a)

oo 2

1co
and the relation
A
Nuoo

~1; Py=1. " (15b)

We can see that when Po — 1, there does not appear any size effect, although
the size effect could be considerable in the same wire without coating. The
observed changes depend upon the difference of coefficients of the specular
reflexion on the surface of the uncoated wire and on the surface of the coating,
respectively. There is only a small probability for this coefficient to be of the
same value for the surface of the layer arising from molecule adsorption
as for the originally clean surface of the wire. That is, according to our oppinion,
the reason, why after a period of time different changes of conductivity, caused
by a size effect, were measured in the same samples.

The presented result could be utilized. If a layer were found, or a technology
of the production of a layer with Py ~ 1onits surface, this layer could , ,protect*
thin conductors from the size effect, which fact could be of great importance
in low amemn@.eE.m technique.

According to the relation (15b), the presence of a surface layer modifies the
size effect on an uncoated wire or filament, even when Po < 1. Although the
value of the thermal conductivity Ao could fall due to the size effect to zero,

a certain remnant thermal conductivity Awo(Po) > 410(0) would remain of

a surface layer.

The presented considerations are more real in the case of the thermal

conductivity, since in the case of the electrical conductivity of metals there
is almost always a diffused scattering observed on the surface (P = 0).

Relations (14) can be interpreted in a similar way, but it is necessary to take :

into consideration that instead of a coefficient of reflexion on the surface

of the layer, there is a coefficient of specular reflexion at the boundary in.
relation (14a). The ratio of constants As/A; = (0f 00T )2/ (fof0T )1 18 equal 0 .

one for thermal conductivity, A2/A; for electrical conductivity can be found
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by means of the Boltzmann or the Fermi-Dirac distribution. It is determined
by the position of the Fermi levels in connected media. In the majority of
practical cases this effect is of no great importance, as the transport of phonons
or of the electric charge in a thin filament or wire will not play a significant
role compared to the transport in a bulky coating.
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