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THE CONSTRUCTION OF GENERATORS OF THE
DYNAMICAL 2 + 1 LORENTZ GROUP FOR
QU ANTUM-MECHANICAL SYSTEMS

JOZEF LANIK, Bratislava

The connection between the Lie algebra of the postulated dynamical
(non-mvariance) 2 4 1 Lorentz group and the various forms of one-dimen.-
sional Hamiltonians characterizing quantum-mechanical systems is discussed
under the assumption that the compact ¢ generator of the group is connected
with the Hamiltonian H in such a way that {3 = aH, « being a real constant.

1. INTRODUCTION

The application of the group theory for the description of dynamical systems
is one of the recent attempts in physics. The idea that physical systems might
be characterized by dynamical (usually non-compact) groups and their unitary
irreducible representations has been verified on a lot of quantum-mechanical
examples [1—6]. This hypothesis has consequently been used in strong inter-
actions, too [7—10]. A

Nevertheless, there still are some generally unsolved problems in this new
methodology, even in quantum mechanics. For a given system they are
connected with the choice of the right dynamical group and its representations
and they also concern the identification of observables and transition operators
with generators and elements of the dynamical group.

For solving these problems in quantum-mechanics, besides the standard
method (see e.g. refs. [2—5]) based on determining the right dynamical groups
for & given system with the known Hamiltonian H another method can be used
as well [11—12]. In the latter approach a dynamical (non-invariance) group
and an identification of observables with generators of the group are postulated
and one tries to find the corresponding Hamiltonians (or potentials). It has
been shown in our previous paper [11] that in the case of the simplest one-
-dimensional system and under the assumptions I, IT and IIT listed below,
the potential V(x) can be found explicitely and has the form
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where @ is a Casimir operator of the postulated dynamical algebra. The three
assumptions mentioned above can be formulated as follows:

I. a dynamical group is the 2 4 1 Lorentz group with the Lie algebra
spanned by three basis elements ¢, #;, t3 with the commutation relations ‘

[tr, to] = — its, [te, ts] =it1, [ts, ba] = ita, @)

II. an identification of the operator 3 with the Hamiltonian H is of the form
ts = af, (3)

where « is a real constant and the Hamiltonian of the system is

P2 :
H="24 V@), (4)°
2m
. d
where V(x) is the unknown potential and the operator p, = — ik MMW

III. the generators #;, ¢; are differential operators of the second order.

We notice here that if the postulates (I)—(III) are changed one can also
try to find the corresponding potentials. However, it is evident in that case
that only certain combinations of those assumptions are consistent and allow
us to obtain the potentials.

The purpose of the present paper is to investigate the problem of the con-,
sistency for the one-dimensional case when the only postulate (III) is changed.

We shall suppose the generators ¢; and {5 to be differential operators of the N -th -

order, where N is & finite number and N > 3. It will be shown in section. 2 that
the postulates are consistent only when N = 3 and the corresponding poten-
tials will be found in an explicit form which is different from (1). In section 3
some conclusions are drawn. -

2. DIFFERENTIAL OPERATORS OF THE N-th ORDER AS GENERATORS
OF THE 2 4 1 LORENTZ GROUP :

2.1. The case of the finite Nand N > 3

With the aid of the substitution (see [11])
m Tz

o onone & AT
= 2520
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we can rewrite the generator (3) in a more suitable form

1 dz2

tg = — Py + co(é), (5)

where co(£) is connected with the unknown potential by the relation

/20
col8) = ¥ (& [/ = ). (6)
m
For our aims we shall assume that a representation of the generators f, and ¢,
is of the form _ - .

; N d’/

i Wc Ayi(€) vk t=1,2, (7)
where at least one of the functions Aqyn(E), Aan(&) is not .mmmzﬁom_q equal
to zero for expressions (7) to represent differential operators of the N-th order.

Now we shall investigate the consistency of (5) and (7) with commutation
relations (2). This has been done for N = 2 in ref. [11] and the potentials
of the form (1) have been explicitely found. If N = 0 or 1, one can easily see
that the relations (5) and (7) are not consistent with (2). \.Ho investigate the
oobmmmewbo% of (5) and (7) with eqs. (2), if N is finite and N 2 3, it is more
convenient to introduce the new functions ..

a(§) = Amy(§) + id@y(8), j=0,1,2,... N, (8)
bi(§) = Aay(€) — idey(8), j=0,1,2, ... N,

where i = |/ —1. The notations (8) correspond to the following ones
N
f &
v =6 -+ 1ty = a(&)—,
+(£) pye (9)
=0
N
< m&
l-=1 — ity = bi(§) —,
ds
i=0

where axn(£) and by (&) again cannot be simultaneously equal to zero. It is
also useful to introduce the following notations

Q;.”Q&Amy ~§.” n.ﬁmv, Oc”GaAmv‘ &”Ou ~...J».)ﬁ AMOV
(j) 4/
a; Hmlm\@zmv, ete.,
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Substituting the expressions (5) and (7) into the operator equations (2) and
using notations (8), (9) and (10), the following system of differential equations
can be deduced after some simple but lengthy calculations

a0, B~ (11)
N . .
M A.wv a4 PQ@ + ma:v =—a;, j=0,1,..., N, (12)
i=j+1
N
M A v @nn t-7) + .F@va I_I PNVA: = m:.u .w.“ Ou Hu Mu ...VM/ﬂv AHHWV
f=j+1 : ,
N
w, va [ab§’ — bua’) = —2c0, -4
P

i=0

M A v m&.@:v P SQ:J 4 M A v TN@Q n_ FQ: :H 4

¥
+ M Aswv m&b? = @_Qo q:”_ == W, :mv
.a.. M.
w, A v ?«&3 .1 ?95“_ + ¢ A v T?&Q :' ? Q :‘_ +
ﬂ_\

[ »
~

+ ... +M Agv [ad§? — bai M =0, j=1;3,4,5,...,N, (16)

i=j

N

M A v [ad§? — bia ] + M Ab N Hv [ab$T — biad ] +

=] - i=j+1

z
= +M Awﬂv [ad{™ — biaf™ ] =0, j=1,2,3,...,N. (17)
i=N

It is easily seen that in order to investigate the consistency of expressions

fl
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(5) and (7) with the operator equations (2) it is necessary and sufficient to
investigate the consistency of the system of non-linear differential equations
(11)—(17), supposing N > 3. We notice here that the case of N == 2 has been
solved in [11].

The relations

’ ay = an, aP, = —2ay, (18)

by =By, BP, = 28w,

follow immediately from egs. (11), (12) and (13) (if j = N), where ax and B
are the constants of integration. Combining egs. (18) and (17) forj = N — 2,
we get the following condition for the constants ay and fx

onfinv = 0, (19)
from which we generally obtain three possibilities |
@) av =0, By #0, (20)
(i) ov #0, fn=0,
(iii) ay =0, fy=0.

In the following we shall not consider the most trivial case (iii) because it is
the case when Aun(£) = A@n(&) = 0 in relations (7).Thus, let us discuss
the case (i), i.e., ay = 0, fw # 0. The following holds:

Lemma 1. If by = fx # 0, then for a given integer N > 3 and any integer ¢
from the interval N — 1 > i > 2, the solutions of the system of equations (11),
(12), (13) and (17) must have the form

AN = GN-1 = ... == ON—43 = ON—j42 = O, (21)
ON—-i+1 = XN—3+1 = const.

Proof. We shall use the method of mathematical induction. If ; = 2, the
proof of the lemma follows immediately from relations (18) and (19).

Thus when by = fx £ 0, let us assume that eqs. (21) hold for all ¢ = 2, 3,
k — 1, where k is a given integer in the interval 2 < k — 1 < N — 2,1i. e, let
us assume that

ay = an—1 = ... = GNy_gp43 = 0, (22)
AN-f+2 = ON—f+2 = const.
We shall show that egs. (21) hold for i = £k, too, i.e., it will be also true that

oaN-k+2 = 0,
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ay—k+1 = oy-g+1 = const.

To prove the lemma in this way we combine eqs. (17) forj = N — &k > 1 and
the induction assumption (22). After some rearrangements we get

Ne—k+42 N
A ka ﬂv av-k+2 b, = AZ _ ~V By i (23)

On the other hand, mz_oma;:n_:m relations (22) into eq. (12) (forj = N — k + 2),
one obtains

a e = — 2an-k+2. (24)
Combining relations (18), (23) and (24) we have (since fx # 0)
(2N —k + 2)an—k+2 =0,

from which it follows that ay-z.9 =0, if bk < N — 1. .EEmu this result com-
bined with eq. (24) proves Lemma 1. '

Now, using Lemma 1, eqs. (18) and (16) for j = N > 3, we obtain after
some calculations (and since Sy # 0)

4a3 = NalV, (25)

where as = a2, az being a constant due to Lemma 1. On the other hand,
combining Lemma 1 and eq. (12) for j = 2, we get

al) = — 205, (26)
For N > 3, egs. (25) and (26) can simultaneously be fulfilled if and only if
ag = og = 0. Thus, we have proved:
Lemma 2. For a given integer N > 3, if by 0, then the solutions of
equations (11), (12), (13}, (17) and {16) must be
ay — ay-1 == ... = dg = Ou
ay == oy = const.
Lemma 3. For a given integer N > 4, if by = fx # 0, then the solutions
of equations (11), (12), (13), (17) and (16) must have a form
ay = ay-1 = ... =a; = 0,
ay = oy = const.

The proof of this lemma can be easily given by combining Lemma 2 with
eqs. (16) (forj == N — 1 > 3) and (12) (for j = 1).
Now, using Lemma 3 and the notation {10) we get
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ag — o == 0

from eq. (12) for j = 0.

Tt can be easily seen that for N > 4 these results are not consistent with
eq. \15), if we suppose by = fix # 0, i.e., in the case (i) (see relation (20)).

In the case (ii) (see (20)) the same result can be obtained in a similar way
as in case (i). Thus, summing-up, we have proved that the operators (5) and (7)
do not represent any generators of the 2 +- 1 Lorentz group if at least one
of the Ay (&) and A@n(&) is not equal to zero and if the finite integer N >
When N = 3, Lemma 3 is not fulfilled and this case must be investigated

separately. It will be done in the following.
2.2. The case of N =3

In this case the system of equations (11)—(17) is consistent, and, using
Lemma 2 (supposing e.g. bs = fs # 0) it can be solved. After some calculations

we obtain solutions of the following form
1 —1
= as(§) = = = ; 27
a3(é) = ax(§) = 0, a(f) 165" ao(§) 86 §+ o (27)
ba(£) = Pa, ba(€) = 235 — 1630, .
bi(E) = — 4BsE? + 4.168300f + P,
bo(E) = — 8Ba£® + 3.4.1663w0é2 — 4.16.1653aGE — 8fat + 2h1é +

+ 4.168500 — 16830001,

1 7}
co(£) = &2 — 16Bsoof + 326305 + ——
863
where i3 = 0, ag, f1 are constants of integration. If we introduce a new constant
B
= 32 —— + — (28)
mwﬂo 8 uw
then the calculated potential has the form (using (6}))
. m 20 \2 C
Vix) = a— 8fsxol |/ — | — — (29)
k202 m «

which is the potential of the harmonic oscillator. It can be easily shown that
the constant C is connected with the Casimir operator G by the relation
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where @ is defined as follows
G=1—8 .

Finally we remark that the operators #;, f, and f3 can be rewritten in a more
suitable form using the adjoint creation and annihilation operators a* and a,
respectively, defined by the relations

a+”l|~;h + & — 8f3x, . (30)
2 d&
1 d

&“Mmm+m|m\wm§.

They fulfil the following commutation relation
[a,a*] = 1. (31)
Combining expressions (5), (9), (27) and using relations (28) and (30) we get

ts =  (aa* 4 ata) — C, (32)
1
m+ = i 9+v
8f3
. = — mmuiw —C + WVQ

We mention here that this form of the operators is consistent with the
results of ref. [13]. It can be easily seen that the operators (32) do not fulfil the
Hermiticity conditions t3 = ¢ , ¢+ = ¢, thus the corresponding representations
of the group cannot be unitary.

3. CONCLUSION

In the present paper we have investigated the connection between the Lie
algebra of the postulated non-invariance 2 1 1 Lorentz group and the various
forms of one dimensional Hamiltonians (or more Pprecisely, potentials) under
the assumption that the generator #3 of the group is connected with the Hamil-
tonian H in such a way that ¢ — al], where a is a real constant. It has been
shown that this problem has no solutions if the generators £, and ¢; are supposed
to be differential operators of the N-th order, where N is a finite integer
and N > 4. The solution exists only when N = 2 or 3 and the corresponding
potentials are given by relations (1) or (29), respectively.

Finally we would like to mention that the results of this paper suggest the
construction of generators of dynamical groups as differential operators of
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approximately equal orders if they are supposed to be of the finite orders
and they are constructed in terms of the dynamical variables the number
of which is lower than the number of generators. In this connection see also
ref. [14].

The author wants to express his thanks to Dr. M. Blazek, Dr. J. Niederle,
and Mr. J. Cernuch for valuable discussions.

Note added in .ﬁseo\. Recently the solution of the problem formulated in the present
paper has been done by Cordero and Ghirardi (Trieste preprint IC/70/26) for three-
-dimensional systems under the assumption that the only postulate (1I) is changed.

REFERENCES

[1] Barut A. O., Phys. Rev. 135 (1964), B 839.
[2] Barut A. O.,, B6hm A., Phys Rev. 139 (1965), B 1107.
[3] Barut A. O., Budini P., Fronsdal C., Proc. Roy. Soc. 4 291 (1966), 106.
[4] Mukunda N., O'Raifeartaigh L., Sudarshan E. C. G., Phys. Rev. Lett. 15
(1965), 1041.
[6] Barut A. O., In: High-energy Physics and Elementary Patricles. International atomic
energy agency, Vienna 1965, 679.
[6] Budini P., Nuovo Cimento 44 (1966), 363.
[7] Dothan Y., Gell-Mann M., Ne’eman Y., Phys. Lett. 17 (1965), 148.
[8] Fronsdal C., Phys. Rev. 171 (1968), 1811.
[9]1 Barut A. O., Implications of the 0 (4, 2) model of strong interactions for Regge pole:
and high-energy phenomenology. Trieste preprint IC/68/88.
[10] Kuriyan J. G., Sudarshan E. C. G., Phys. Rev. 162 (1967), 1650.
[11] Lénik J., Nuclear Physics B 2 (1967), 263.
[12] Doebner H. D.,’'Melsheimer O., J. Math. Phys. 9 (1968), 1638.
[13] Hwa R. C., Nuyts J., Phys. Rev. 145 (1966), 1188.
[14] Teasdang U. M., Kupuaxos A. A., O meaax cea3aHHBZ ¢ oGepMuBle@ICUUMU an-
eedparvu arzebp JH. Tpyam Mat. unc. um. B. A. Creknosa AH CCCP, Mocksa 1965.

Fyzikdlny ustav SAV,
Bratislava

Received February 20t:, 1970

137



