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ON STRESS-STRAIN RELATIONS IN THE THEORY
OF NON-LINEAR VISCO-ELASTICITY

RUDOLF PREVRATIL, Bratislava

It is supposed in the theory of linear visco-elasticity that the relation
‘ ;
oft) = @4‘..2« ~ 1) (r)dr (1)
0

holds between the stress o(t) and the strain £(t). The symbols & and y(2)
denote the modulus of elasticity and the relaxation function of material,
respectively. In the theory of non-linear viscoelasticity, certain generaliza-
tions of relation (1) are often used. An important case may be obtained
by replacing the strain by some of its non-linear measures 5{e(t)], so thag
the relation

t
oft) = @A‘.ﬁc — ) 9'(7r) de (2)
0

is obtained instead of relation (1).
The specific work W(e; T) done by the stress on the strain in the time
interval <0, T is given by the relation

T
Wi(e; T) = x a(t) £(2) ds. (3)
]

Some basical thermodynamical principles as well as other considerations
lead to the condition that the specific work given by (3) should be non-
-negative for every e(z).

The purpose of this paper is to find the conditions restricting the shape
of the functions () and 7(e) which ensure the non-negativity of the specific
work. However, the Paper deals with a specific case: it is supposed that &(t)
is a closed deformation cycle:

&(0) = &(T) = 0. (4)

The conditions ensuring the non-negativity of the specific work — provided
that (4) holds — are given in Theorem 2, proved at the end of the paper.
The function y(t) should be positive, decreasing and convex from below
in the interval <0, @); the function 7(e) should be non-decreasing in the
interval (—1, w) provided that 4(0) = 0.
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1. INTRODUCTION

that there exists a linear relation

[
o(t) = B[yt — 1) e'(r) dr (L.1)
0

unit volume of the body in the time interval <0, 7> should be positive {or

is a consequence of the uniqueness of the solution of a certain class of boun-
dary-value problems {1](or a consequence of basic thermodynamical principles
[4]).

The theory of linear visco-elasticity describes satisfactorily the behaviour
of many visco-elastic bodies if stress and strain are mzmmammba_% small. However,
the results of some experiments (see, for instance, [5, 7]) indicate that the
stress-strain relations are strongly non-linear in the case of a large stress and
strain. Moreover, there exists g, large number of materials of Practical impor-

cases by various types of non-linear integral relations [2, 7], which generalize
the relation ( L1).

An important special case can be obtained if we substitute for the strain
&) in (1.1) some non-linear function 7[e(t)] of the strain. In this case, the
stress depends linearly not on the strain but on a certain non-linear measure

arbitrarily.
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In this paper, we shall discuss the materials, the stress-strain relation of
which is given by equation (1.1), generalized in the way mentioned above:
These materials will be called geometrically non-linear materials. Our task
will be similar to that of paper [4]. We shall investigate the conditions which
should be fulfilled by the relaxation function p(f) and the measure of defor-
mation #(e) of a geometrically non-linear material, in order to render the
specific work done by the stress ¢(t) on the strain &(t) in the time interval
<0, T non-negative. :

2. FORMULATION OF THE PROBLEM

Let the strain &(t) and its derivative ¢'(t) be continuous in the interval
<0, T for every positive 7" and let &(0) = 0. Let, nle); .iov = 0 denote a single-
-valued function defined in the interval {(— 1, ) in such g way that the
function #(f) —= nle(t)] and its derivative 7'(t) are also continuous in the interval
<0, T") for every positive T'.

Definition 1. The material is called geometrically non-linear if the relation
[4

olt) = B[yt — v) ) dr (2.1)
)

between the siress a(t) and the strain &(t) holds for every non-negative L, provided 7
s @ non-linear function of e.

Similarly as in the theory of linear imoo-&mmao?%, it is assumed that the
relaxation function ¥(t); p(0) =1 is defined and bounded in the interval
<0, o0) and continuous at every point of this interval. It is assumed further
that the modulus of elasticity & is a positive constant.

The specific work W(e; T) done by the stress o(t) on the strain £(t) in the
time interval (0, T) is given in the case of a geometrically non-linear material
by the relation

T Tt
Wie; T) = [o(t) &'t) dt =Ef [vlt — ) '(2) &'(¢) dz ds. (2.2)
0 00 s

Suppose the body is deformed isothermically. If follows then from basic
thermodynamical principles that the work given by the equation (2.2) must
be non-negative.

- It seems to be very difficult to find out how thig condition restricts the
shape of the functions ¥(t) and 5(¢) if we demand it to be satisfied for an arbit-
rary &(£), which is continuously differentiable in the interval <0, 7'>. We shall
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mANJ = mAOV =0 . Aw.wv
are valid for &(t).
It is obvious that the relations (2.3) imply the same relations for the function

Definition 8. The Stress-strain relation of the geometrically non-linear material
8 admissible of the relation

We shall accomplish the proof of the resulting Theorem 2 in several steps.
First of all we shall prove the following
. boE.Em L. Let y(z); Y(0) =04is¢q SJunction defined, bounded and non-decreasing
in the interval {a, b>,a <0 <b. Let us write Y(x1) = y; for the sake of brevity.
Then the relation

8 =21 — ways + wayp — Z3Y2 + ...+ Zagn > 0 (3.1)

holds for arbitrary z; € (q, b, i =12, ey 7.

Proof. Suppose there exists & natural number &, 1 « < n, such that the
numbers 21, z;, 2.4 do not form a, non-decreasing or non -increasing sequence
of three numbers, so that the inequality

(@r — k1) (2541 — ) < 0 (3.2)
holds. The function y(x) is non-decreasing, thus

(e — ,$,.; (@e1 — ) < 0, (3.3)

68

or, after some re-arrangements
= TeYk-1 + TaYx — Tknyr > — Tk+1Yk-1. (3.4)
The relation (3.4) yields the relation
828 =ay — oy + oy, — oy + .. oy (3.5)
where y; = y(z]) and the equations
=23 2, =z, (3.6)

are valid. The numbers }, z;, ... x,, form a non-decreasing or a non-increasing
subsequence of the sequence zy, xz, ..., Zy. It is sufficient now to prove the
non-negativity of the sum S’. We shall prove it starting from the assumption
z > 0> #,,. In the other cases the proof may be carried out in a similar
way. In our case, there exists a natural number k, 1 < & < m, such that the
relations

4

220> &mtn Y2 0> “S“t (3.7)

are valid. The sum 8’ can be divided into three parts in the following manner:

8 =8+ 8+ 8 (3.8)
where
Qm = &m& == &\mm\h w_r ...\+ hmm-rq\m-u - %M.S\?H (3.9)
Qw = T Yy T .»wirSn :ﬁ &a.ﬁw\at , ., .,
Qw TS .&a+wu~\w+ﬁ l_l .&w+ww\~n+w T T XY g |T Lo

‘o

It follows from the conditions of Lemma 1 that Y; 2 0,0=1,2, ..., m.
This relation and the relation (8.7) yield the inequality S; > 0. The sequence
x, By «uns 7, is a non-increasing sequence of non-negative numbers. The
same holds for the sequence y!, Y2> -+, y5. This implies the relation z}y, —

p | 7 (¢)

J
L N7
LS —>
Fig. 1. Shape of the funetion wi1(2).
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~ %y > 0, with the consequence S; > 0. The inequality 85 > ¢ ‘may be
wuogm._: the same way. Equation (3.8) yields then 8" > ¢ Q. E. D.
Consider now a relaxation function gy(¢) given by

B {1t o<t
0 fort > ¢

where ¢ is a Positive number, The sha ho function is o o
i : pe of the function
We shall prove the following - eteenan Fig, 1.

-decreasing function satisfying the condition, 7(0) = 0, ;

Hv,u.ooh. The: relation (2.1) may be re-written by means of integration per
partes in nro_mozoﬂmnm way:" . _ =
; , ‘
oyt — T)

o) = B[yt — 7) y()], -, P 7(r) dz (3.11)
T
, 0
Let us set ¥(t) = {i(t) and take into account the condition 7(0) —= 0. We obtain
olt) = Eln(t) — My, (3.12)

.,Srmwa the symhol IMy(t) denotes the average value of the function 7(7) in the
mterval (¢ — #;, £, which is given by

T o . )
W(e; T) H@& 7(t) &'(t) df — [ M) e (t) dg} (3.14)
0

is then valid for the specific work. The second integral on the right-hand side

of this relation may be modified aga; i i
gain by means of integratic
80 that we obtain Y = R et

7 T
We;T)=E{ | 5t) 'ty ar — (M () (t)]5 +
0 0

Let us Suppose now in conformity with the conditions of Definition 3 that -

dM,(2)
d¢

et) dtf. (3.15)
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£(t).is a deformation cycle closed in the interval <0, T>. The first two terms
on the right-hand side of :(3.15) vanish in this case. Furthermore; we may

write

A, (t) 1

& il g Mt + 4t — Mo0)] = ~ (3.16)
i s | _
= | M) +N [n(6) At — it — 1) 48] — M(t)| =

1

= —[nt) — n(t — )]
1]

Hmﬁ:%. .sa obtain
Fer . s T
.@ g
W(es T) == | Int) — 0t — t)] ety t. (3.17)
: ; :
0

Since £ and t1 are positive constants, it is sufficient to prove that the relation
T
I=[In@) —nt—t)ewdt > o (3.18)
0 . . .

is valid for every £(t) closed in the interval <0, T).

Proof of the inequality (3.18) will be based on Lemma 1. Suppose that
ti <T. (In the reverse case, the validity of the relation (3.18) is obvious because
7t — t1) = 0 and sgn 7(¢) = sgn &(¢)). Choose a natural number % and set
4t = tik. Then there exists a natural number # > k such that

ol T < (n+ 1) At (3.19)
Let us divide the interval 0, T in the following way :

bh<0<Sh<b<.. <t,=T, (3.20)
wheére v o
' ’ ? “hs.lw ITBNM & = ﬂu Mv e, M. , Amw.wu—.v

It has been already mentioned that the function e(t) and 75(¢) vanish in the
interval <f,, 0>. Let us consider now the respective integral sum I, instead
of the integral I. For this sum the relation

I, = R_mM Amtﬁ — &Ni—k) ‘ Aw.ww.v.
bt . ¢
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is valid, where the notation y; = p(t,); ¢ — &(t:) is used for the sake of brevity

and where 7; = 0 for J=0, —1, +-+s 1 — k. The sum I, may be rewritten
in the alternate form

n
Iy = At M Amnvww — &fir—k + &y Nr—k — &y Nr—2k +- ... + &r—ax Q‘lng. A..w.w..wv

ran-k4+1

In this relation, « is a natural number for which

conditions of Lemmag, 1 because the functions £(t) and #(¢) are continuous in
the interval 0, 1. Qobmaaumba%, these sums are non-negative, as well -ag
the integral sum I, for évery natural n. Passint to the limit % — oo, which

is possible thanks to the AWYF_EWEE:@ of the integrand in (3.18), we obtain
I>0.QE.D.

Let us pass now to the resulting

Theorem 2. The relation, (2.1) is admissible of the function ¥(¢) is positive, de-
creasing and convex Jrom below in the interval (0, @) and if the function n{e) is
non-decreasing in the interval (=1, o) provided that 7(0) = 0.

Proof. The functiong () and #'(¢) are continuous in the interval 0, T>.
Consequently, the function f(¢, T) = &'(8) 4'(z) is continuous on the triangle
which is situated in the Plane {¢, 7} and for the points of which the relations

W(yp) = m:% — 1) f(¢, ) dt dr. (3.27)

The functional (3.27) is additive and continuous 6]. It follows from its additi-
vity and from Theorem 1 that
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W(p) > o, (3.28)
where  is the sum
n n
O =24pt); >0, Sip—1 (3.29)
g=1 tml
composed from the functiong #(t), which are defined, similarly as the funetion
¥1(f), by the relation (3.10), in which for ¢, a certain positive #; is substituted.
~ Suppose now that ¥(t) is a positive, continuous and decreasing function
defined in the interval <0,T), which is convex from below and for which
¥(0) = 1 is valid. Let us divide the interval <0, T into n pieces with the same
length and denote by o = 9(0), 1, Y2, .-, ¥u = 9(T') the values of this
function at the points of division of this interval. Let us denote further

A =y — g, (3.30)
It is obvious that
A z2d:> ... > 4,. (3.31)

Let us substitute for the function y(¢) the function (t), which is composed.
of straight pieces and which coincides with y(t) in the points of division -
¥« = y;. The function (t) is continuous and monotonous 80 that

lhp(®) — v (@l = max ju(t) — 50 < 44, (3.32)

te<0, T

where the definition of metrics in ‘Ca by means of norm was used. It may
be easily proved that there allways exists a function ¥(t) given by the relation
(3.29) such that P(t) = §(t) on <o, T, provided the function ¥(t) is convex:
from below. Consequently, the relation

W(y) >0 (3.33)

holds. Let us pass now to the limit > co. It follows from the continuity
of the function p(¢) that A; >0 and, consequently, p(¢) > y(f) in the sense
of the metric given by the relation (3.32). Since the functional (3.27) is conti-
nuous, we obtain W(y)— W(y). Finally, the relation (3.33) yields the relation

W(y) > 0. (3.34)
Q. E.D.
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