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MEASUREMENT OF THERMAL CONDUCTIVITY
OF THIN SAMPLES OF A FINITE LENGTH

JURAJ KRISTOFIC, JOZEF LASZ, Bratislava

The Paper contains a solution of the problem of messurement of thermal
aozm:.oisew of a thin plate by the impulse method, taking into account

INTRODUCTION

mvm@m.w [1] deals with the problem of measurement of thermal conductivity
of @.S:S plate having a finite thickness, assuming, that its length and width
are infinite. When measuring materials having a good thermal conductivity
(metals and some semiconductors), it is practically impossible to fulfil these
erog..mﬂo& conditions. This paper deals with the influence of the finite di-
mensions of the sample on the measurement of thermal conductivity by the
Impulse method. Numerical ‘computation was made for a simple concrete
case. Based on these solutions, the geometry was chosen and measurement
were made on the n-type of silicon, confirming theoretical conclusions ove
- wide range of temperatures.

THEORY

Assume a line impulse heat source acting in the middle of a plate. The in-
crease of temperature in point z located at a distance r from the line heat

source on the surface of the sample (Fig. 1) can be expressed by the following
-equation
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in which @ — is the quantity of heat supplied by the impulse, b — the length
of the line heat source,
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B — the thickness of the sample, 2 H — the length of the sample, 1 — the
coefficient of thermal conductivity of the sample, ¢ — the cpecific heat of the
sample, y — the specific matter of the sample, 4, — the coefficient of thermal
conductivity of the sole plate, ¢, — the specific heat of the sole plate, y, the
specific matter of the sole plate, ¢ — the time.

Fig. 1. Scheme of arrangement for measurement of thermal conductivity by the impulse
method. 1 — sole plate, 2 — sample, 3 — indication point z, 4 — heating tape.

The first member in equation (1) represents the temperature rise when the
finite dimensions of the sample are taken into account. The second member
represents the contribution to the temperature rise caused by the finite length
of the sample, assuming that the heat can dissipate only into the sole plate,
computed by the ,,method of fictive heat sources* (see ref. [1]). By arranging
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equation (1) we obtain the following expression for the temperature rise
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The GNM_E:E temperature at the given point is obtained from the condition
that 7'/2t = 0. Tt occurs in the time

tm = r2[4ky, (3)

where y is the solution of the equation

ﬁwgwo q" exp (—4pn?y — 15 W:Womxw — (2ms — 1)%y{] (2ms — 2y — 1) +

+ 2 lexp (—(2ms -+ 1)2y)] [(Zms + 1)%y — 1) — [exp (—y)] (y — 1)] +

m=0

+ [ W exp (—(2ms — 1)zy)

m=0
Jr,sw%% (—=(2ms + 1)%) — exp (—y)] m:wvg@gg exp (—4n’p%) = 0. (4)

: ere N“ ;\ mﬁﬂ@ $ Nw\“ ‘
Q . . <. . w _‘ 1
— U, 1. e. m € sam —u ’ I
_~ m 1. e __ -__@ _::._..ml —O: ~__ :_ :. a .mv~® 18 :Oﬁ res @Oﬂmw @@.—Nm\ 10on A V

8 2> g pny exp (—4p>niy)

=0

y—1+ =0, (5)

feel

2 M q" exp (—4pnly) — 1
n=0

the solution of which can be found in paper [1].

wﬁa.oﬂ equation (3) it is possible to compute the coefficient of thermal con-
ductivity £, provided that the time of the maximum temperature rise and the
Wmﬁﬁﬁoemw Yy are known, while y has to satisfy equation (4) and is a complex
unction of the parameters » and s. A general solution is too complex and
we armw.mmoﬂ limit ourselves to the computation of the corrections in the first
approximation (taking into account only the first fictive heat source) and shall
attempt to find criteria permitting the sample to be assumed to be infinite
and to use for measurement, expressions derived in paper [1].
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MEASUREMENTS AND RESULTS

In cases when it is sufficient to consider the effect of the temperature rise
due to the first fictive heat source at a distance 2 H — » from the reference

point, the temperature rise due to this fictive source is’
— Lexp|———71 (6)
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A numerical computation was performed for the ratio of Y = Tp/T,,
T, being the temperature rise for a sample linearly unlimited, i. e.
(nh)? 72\
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and the results are plotted in Diagr. 1. With the help of this graph it is possible
to find the limits of the measurements of thermal conductivity and of the

ratio of H/r, if time is taken as a parameter.
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Diagr. 1. Computed values of y for different values of k

In case a certain range of the values of % is assumed and it is intended
to measure with a certain chosen accuracy (i. e. the influence of the fictive
source is not to exceed a certain percentage), it is possible to read from the
graph the dimensions (r and H) of the sample, the time of the maximum tempe-
rature increase being limited at the same time.
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Fig. 2. A block scheme of measurement.

On the basis of the above mentioned analysis an arrangement of the heating
and the detecting elements was chosen for ¥ < 5 %- The samples were
prepared from a single crystal of silicon of the type n alloyed by phosphorus,
cut in a plane [II]. The heating tape, 0.02 centimeter wide, was made by
currentless nickeling directly on the ground silicon sample. In the case of the
material having a specific resistance 0.001 Qem~—1, an 800 A thick oxide film
was created under the heating tape because of the great conductivity of the

measured material. The natural voltage of the material — Sj served for an

indication of the temperature rise at the point under consideration. The mar-

and

be . (9)

where T, and T, are the temperature increases at the points 7, and r, at the
time £. The results of measurements are shown in Diagr. 2and in Table 1. They
include results obtained from samples with g different specific resistance
and different thickness at temperature ranges between 100—300 °K (0).

The solution of the case Presented at the beginning of Chapter Measure-
ments and results makes it possible to find the limits of the use of the re-
sults given in paper [1] and thus determine a suitable geometry and the po-
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sition of the indicator of temperature rise in a certain range of values &. w
Even though it is only a first approximation, it is sufficiently characteristic

of the practical needs.
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Diagr. 2. Relation between thermal conductivity of silicon and temperature
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We shall examine the variations of the values of tm and y in Eq. Amv in case
that the effect of fictive sources is not negligible. In such a case it can be
expected that the time of the maximum will increase. It follows from mg.. (3)
that y has also to vary since & is a material oObmemBe.. Such a case was verified
by measuring the dependance of 4 and % on the ratio Hlr at a constant tem-
perature. The results are poltted in Diagr. 3A and 3B. The measurements were

Table 1

A comparison of values ky, and kp at different temperatures

o = 0.5 Qcm
@ [°K] 119 153 142 173 220 263 295 |
kp [em?/s] 46 %0 2.8 1.9 1.7 1.4 _‘wt!l
km [em?/s] 44 3.8 2.8 19 14 Lo zw.zcl
. ¢ = 1073 Qem
(2] momwu 100 115 150 200 215 260 295 L
kp [em?/s] i 10.8 7.3 3.0 2.5 2.2 1.3 ll[—:'«
ko [em?/s) 11.2 a5 41 3.1 25 i 1.5 1.2
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Diagr. 3A. Values of thermal conductivity Diagr. 3B. Values of thermal conductivity
and parameter y for different arrange- and parameter y for different arrange-

ments of measurement 59 =1, ments of measurement; g =1,

based on the assumption that the temperature of the reference point does

not change. From diagram 3A we shall determine when it is possible to compute
the coefficient of thermal conductivity from equation

L o— 7% by, (10)

y being the solution of Eq. (5).

For the parameters ¢ = 1, » — 0.8, the value of s must be s = Hjr > 8.
For the same case the parameter y is plotted as a function of s in Fig. 3B.
Knowing its value for the given parameters p and s, it is possible to measure

also on smaller samples if the conditions remain the same, i. e. if p = 0.8
and g = 1.

For different conditions of measurement (different values of p and parti-.
cularly of q) the criterion s > 8 is no longer valid and it is necessary to deter--
mine it by measurement for each case. The same holds for the parameter y.

Equation (4) makes it possible to determine y precisely as a function of P, S
and g. This leads, however, to complicated computations and to the necessity
of using a computor.

A very good agreement was obtained in evaluating the thermal conductivity
using equations (8) and (9) — see Table 1. The above agreement, of the values
of k determined in two different ways confirms the suitability of the geometry
used. The experimental results plotted in Diagr. 2 show an agreement with the
previous results published. In the range of thicknesses tested (200 to 80 --m),
the influence of the thickness on the coefficient of thermal conductivity &
does not manifest itself even at the nitrogen temperature. To measure directly
the thermal conductivity at temperatures approximately 20 °K or lower,
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when an influence of the ,size effect on the thermal conductivity could be
expected, seems to be hard to realize on the given material ( large value of k)
by the method used. Within the above mentioned temperature renga ﬁaw
influence of the concentration of the admixtures on the thermal conductivity
is more pronounced.

The accuracy of measurement depends on the accuracy of time measurement
which, with the equipment used, was 2.5 ¢, in the most unfavourable case.

CONCLUSION

The paper presents a solution of the influence of a finite length of the sample
-on the measurement of the coefficient of thermal conductivity. A numerical
computation is presented for a simple case. Conditions are analysed under
which the results of paper [1] can be used for thin samples of a finite length.
The condition is determined for a concrete case when it is necessary to take
into account the finite length of the sample. Theoretical conclusions were
verified by mesurements conducted on thin silicon samples.
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