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INVERSE SCATTERING PROBLEM
INCLUDING ARBITRARY PARAMETERS

JAN WEISS, Bratislava

The inverse problem is formulated for determining the class of potentials
containing the exponential potentials and the long-range rational tail for
an arbitrary partial wave. As an investigation approach the generalized
N(E, r)[D(E, r) method from [3] is used. A possible way of the interpretation
of arbitrary parameters resulting from the inclusion of the long-range region
is also discussed.

1. INTRODUCTION

The solution of scattering problems in relativistic formalism (e. g. within
the framework of the N/D method) exhibits the so-called CDD ambiguity.
CDD poles are always connected with some arbitrary parameters entering
the problem. To avoid the CDD-pole ambiguity it is generally necessary to
impose additional restrictions upon the solution. In most cases these restric-
tions are equivalent to the requirement that all forces in the problem are due
to exchange of particles in crossed channels. The non-relativistic analogon
of exchange forces are Yukawa potentials. It is therefore not quite surprising
that in the inverse problem of the non-relativistic potential scattering one
founds features similar to the above mentioned situation. Namely, if the
scattering data are given one may found a unique potential within the class
of superposition of Yukawa potentials. If one admits also potentials decreasing
as a negative power of r, then the solution becomes ambigous. Tt appears
therefore that the non-relativistic analogon of CDD poles are potentials with
a ,rational tail” (e. g. decreasing like r—» for r - o).

In paper [2] we tried to establish the non-relativistic CDD ambiguity analogy
and to construct with the help of this analogy a close formula for the corres-
ponding potentials using constant quantities which occur in solving the inverse
problem*. The presence of such quantities was induced according to the
method elaborated in [7] and [9] just by taking into account the long-range
forces in a reaction of particles. However no simple result for the potentials
was achieved, although we eliminated finally the region of the short-range

" % As to the applicability of the inverse problem method in the various fields of physics
the reader is referred to [1].



forces. Nevertheless it turns out: that the complete solution of the inverse
problem covering both mentioned interaction regions is possible and it gives
again some interesting results of mathematical character.

The algorithm of the proposed inverse problem is formulated within the
framework of the off-the-mass-shell N/D method from [3]. We consider here
the case of uos-wa_paﬂmﬁa.momgmlbm which produces the potentials decreasing
exponentially at infinity (particularly of the, mewmgmb:.a%wm [4]) plus the
long-range potentials with the rational behaviour by de Alfaro and Re gge
[5] and the corresponding wave functions, of courseé. The range of the problems
is not so wide, but despite this the inclusion of arbitrary parameters into the
inverse problem calculations can help to clarify various questions connected
particularly with the ambiguity in the N/D method of the S-matrix approach.
1t should be added that the inverse problem approach by [3] seems to be
available for the illustration of the close continuity of generalized N/D equa-
tions with the usual quantum mechanics and treatments.

First we shall show the connection between the D(E, r) function and the
Jost solution g(k, r)e=ikr possessing the analytical properties needed for the
required type of the potentials (Sect. 2). The g(k, r) function consists of two
parts corresponding to the potentials of the short- and long-range character
and both obey a symmetrical system of differential equations. This system,
written in k and r variables, is solved exactly in the case when the singularities
in the complex k plane are the finite number of poles (Sect. 3). In what follows
(Sect. 4), we investigate the convergence of functions occurring in the Jost
solution and then we pass to the case of discontinuities along a cut by the
generalization of pole case results. The short- and long-range parts of the
function g(k, 7) being solutions of the above system are functions of arbitrary
constants and these parameters determine, as a matter of fact, (see {2]) positions
and residues of CDD poles. Therefore we give also (Sect. 5) the dependence
of the parameters of CDD poles on these arbitrary parameters. We do not
intend to deal with the character of wave functions in the present paper,
however finally as an atypical example of the inverse problem we want to
apply our results for the generalization of the Noyes-Wong equation [6] to
higher partial waves (Sect. 6) using the left-hand singularities as the N[D
input data.

2. OFF-THE-MASS-SHELL N AND .D FUNCTIONS
AND THE MULTI-POLES JOST SOLUTION fk, )

The basic equation of the Petras off-the-mass-shell NjD method has the
following form .

B

N(E; r) = F(E)e* W D(E, r), (I

where F(E) is the mowgmism amplitude, N(H, r) and D(E, r) are e,rm generalized
N and D functions. The D(E, r) function is determined by the equation

:Nv @. = H.uTv ,J.H fl&.xn\ k Nﬁwz , Q@\, (2)
, ) = - , r)dE’.
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In eq. (2) E and k denote the mmmum% and momentum variables respectively
and the ‘intégration contour: ¢ encloses in' a suitable way. the singularities
of the anmnm:m..ﬁmwo [3]). - TR W T .r s

Eq. (1) is the starting-point also for the non-standard way of solving the
inverse problem. If namely in Eq. (1) F(E) is given as an input, we can obtain
the potentials and g@.i&«m.ﬁnmme&:m. The potentials have to be calcuelated
from the expression e .

§SHM§%ESQ, (3)
) = | V(B r)E

s

¢
and theé Jost solution \E“Jv oo.swmwnnom with the ﬁw.a&...?:oao?. depends on
the N(E, r) by way of the g(&, r) function as follows’

g, r) =1 +h E NE, rdE’, (4)
 2r B —E
(&}
hence ,. PIS ¥ - “ o .
g, r) = e, e

In this paper many considerations are offered _.,moh working conveniently
in the & plane. .
To obtain the potentials decreasing exponentially for a large r, it is necessary

to take g(k, r) in the form [7] Cod

. T a, )
k,ry=1 2 ——dk’. ) 6
g( L.vv + .\ﬁ Bk e .. (6)
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It can be easily proved that D(E, r) in Eq. (2) is equivalent to the g(—k, r)
function with a discontinuity on a cut along the imaginary axis in the complex
I plane. N(E, 7)in Eq.(1)is a function having the left-hand as well right-hand
cut in the E plane and it behaves as exp 2ikr for r > oo and ImN(E, 0) = 0
for £ > 0. Let us deform the integration path enclosing now the left-hand
cut of N(E, r) into a straight line running along this cut. We get
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1 ImN(E, »
D) =14 — D g ()
T @ —F _\I@
Finally if we substitute into (7) ¥'* = E' and we write for the discontinuity
1 —E,
— ImN(E, r) = II‘RL\’ ") )
T ﬁ\nl@
where RQ\”@M r) is a real function with the property lim a & —E, r) =0,
F~>0

Eq. (7) yields (using the denotation &’ —> ik’)
ok r)dk
DE,n=142 | ————.
K — ik
mf2

Hence
QAlk.v Q.v = QHHAEV q.v = .NVAqu \\.Vu

and gn(E, 7) is the g(¥, r) function taken on the second sheet of the Riemann
surface. For g(k, ) then the following relation must hold

1 [ Kk
\n. ry = = e R — O !
gk, r) = g(B, r) =1 4 o @lm%m%@“
c
where k is taken on the physical sheet.

If we want to obtain from our calculations also the class of long-range
potentials, it is sufficient to extend g(—k,7) by adding pole terms of

various orders at the origin of the k plane (see for instance [2])

@ 14
F ) Nn\v P QNG\ AC
g(—k,r) =142 Q’Mw|.vi+ &) .S , (8)
— ik (—ik)
m|2 =1

where the pole functions &.c?.v depend preliminarily on » (it will further
be seen that B%(r) are also functions of arbitrary constants.

The determination of g(k, r) is equivalent, one can say, to the determination
of the scattering amplitude, because the singularities of the Jost solution are
simply related to the singularities of the scattering amplitude and we know
that (5) holds, i. e.

gk, r) = eWwrflk,r).
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The multi-pole g(—#, r) function in the representation given by Eq. (8) is the
fundamental function for our solving the inverse problem with arbitrary
parameters.

3. SHORT- AND LONG-RANGE PARTS OF THE FUNCTION gk, r)

Even though the analytical properties of g(k,r) are known on account
of (8), we do not yet know explicitly a®)(k,7) and pP(r). The function
g(k, r) in complete analogy with g(E, r) in [3] obeys the equation of the radial
Schrédinger equation type

gk, v) — 2ikg’(k, r) = u(r)g(k, r), (10)
with the boundary condition lim g(k,r) = 1 and with u(r) as the potential.
Whence it follows that the m:ﬁvmﬁ.\mozm «™ and B must satisfy the system

o« (k, ) + kat¥'(k, r) = wW(r)aW(k, r), (11)
B (r) — 2Ty = w(r)pOr), j=12,..1 (12)

where
uM(r) = — 208V (r) +ow a®'(k', r)dk'], (13)

and the boundary condition has to be fulfilled

lim a/¥(k, r) = lim g(r) = 0.
r—o 7>
Relation (13) corresponds to (3) for the considered class of potentials. It
should be noted that the system of Eqs. (11) and (12) was solved in particular
cases: when \&.s?v = 0 in paper [7] and when «¥(k,r)—~ 0 for large r in
paper {8].

If we wish to obtain the complete solution of system (11) and (12), it will
be convenient to find at first its solution in the case when the singularities
of g(k, ) are the poles only. The generalization of the achieved results for
the case where this function exhibits the discontinuity along a cut will be
s traightforward.

Thus let us consider g(k, r) with = poles on the positive part of the imaginary
axis in the points %ik; and with I poles in the point k = 0

n 1
[T ()¢,
gllk, 1) =1 + 2 w ) N B
2k + ky L, (ik)

r=12.. i=1

theindex ¢ =1,2,3,...,n

(14)



@,9. the sake of convenience we mrwmﬁomm the ,mwiavo_ > at the second term
. p=1 , .

of g(k, r) in formula (14). In all the following calculations it will be necessary-
mo carry out nw.m summation from 1 to » in every expression containing the
:amu.r u. Fraction expressions hawve to contain , this summation before the-
fraction line.) - .

.. The form of the equations that the individual «" and B obey in this case
is the same as in Eq. (11) and Eq. (12).:

A e, ) + kil (i, 1) = u(r)oB(lr, 1), (1ry

» B (r) — 2601(r) = w(rpP(r), (12)-
and the potentials are determined m% the relation

| wWr) = —2(60"(r) + o (ki, ). (15)

N o arw vvw<o-_~zm=dmoum@ system has the following solution (the ‘way of its.
solving is briefly indicated in the appendix i, ii)

T
/ : O, 7Y - o \7
o s ¥
Ok, 7) = Akt (1 4 2 2] % pom)  ae
\o.k - ks Lo k; !
i=1
s 1=1,2,...,n
BO(r) = © (0 £ @) (1t 1
1 Qm.nlrw?.vw - A%Q|~AQ.VWV 1 lT \PiLQ«}ev. %vR\MVQQT Q.v 1 Ahqv
P
i ”‘wu for an even I '
27— 1 for an odd !
7=20,1,2,
) vy=0,1,2 ...,0 L2
1—2
mSE - %o (G—2 (6+2) (o)
i " {85 (r}BTT — YY), (18
o = { 27 for an even I

2t + 1 for an odd I
j=234,..,1
T=20,1,2,...

with z, when ! and j are either even or odd simultaneously and with z, when [

and j are even and odd mutually (these rules hold only as long as the indices.
of s are not —1, 0), where ,

2(r)

{9} = (2v + 1)

, (19
2p1{1)2014(7)
v = { 27 for an even ¢

2t + 1 for an odd ¢

7=0,1,2, ...

) . . 2o(r y— 1)y — 2
{s9700)} = ; (2v + 1) ) 1(r) A A ) X
' Zy+1(7) 2 -
r = (27 for an even ¢
27 + 1 for an odd ¢
y—jroze ) .
Zy— gl )T Za—a\T) z2;\"
% uAveAv + AwmlT: »uAvav , Awov
2y 9(1)29—1(7) Za-9(r)2a—1(r)
A=v—1,v—2,...
=v—j)=234,.
o+1
v+1
2 2y
AP = W =) e (21)
Lt \at 21 . X
v=0,1,2,... )

with similar rules as for as z, and 2, and the indices of s as above, {s/~2(r) = v
for ¢ < j — 2; the expression in square brackets is equal to 1 for j>».
In Eqgs. (19—21) 2,(r) are polynomials fulfilling the recurrent equation

L) — 22 (M) + 7 (r)aalr) = 0, (22)

with the initial polynomials z, = 1 and 2, =7 + ¢, ¢, being an arbitrary
constant.

Consequently, the solutions o« and B of system (11') and (12') are
mutually associated according to Eqs. (16—18) by means of linear nonhomo-
genous equations in which the polynomials defined by (22) play an important
role. The structure of these equations is likewise remarkable. The partial
sums of the z,(r) polynomials appear everywhere. In these partial sums the
polynomials obey a certain occupation rule in accordance with Egs. (19}
and (20).

Although we found only Egs. (16—18) for o and £’ by solving system
(11') and (12"), it is not difficult — due to the character of expression (21) —
to calculate from the above both series of the sought functions. The terms
of A%, (', r) with » > 1 are composed symmetrically of the same poly-
nomial configurations which occur in &:3 for j > 2, respectively. The
properties of the polynomials z,(r) were investigated in [8]. The most important
property among them expressing simultaneously the symmetry of Egs. (12)
is related to (22). From Eqgs. (17) and (18) it follows that the number of the
polynomials and from Eq. (22) that the number of the arbitrary constants
increases proportionally with an increasing I, beginning from z; for I = 1.
The increase of the polynomial degree is defined by the rule »(» 4 1). For
the sake of comprehensibility of the obtained results we quote in the appendix
iii Eqs. (17) and (18) for two concrete values of [ as & useful example. The



wo~%.u~05mm_m z(r), as it will be obvious further
partial waves a repulsive centrifugal potential vsﬁmo

tail, but with
-, respect to Eqs. (15) and (16) they affec

form for the individual

rand a long-range potential
t the short-range potentials

Let us quote as an example the functio

nary axis in the point &k — i EL gk, ) th, v Polg on the imagi-

1/2 and with [ poles in the point k = 0. In this

case
1
) i
Wk, 1) = APhobe (14 S N2 ) ) 23
\h—. [ NQH ’ A v
=1
89(r) =
(¢ = ©® Yy _ ;0 v .
T = Amun a.e.l :.waiw ,m%albv 1+ \HMNLQQM VJR%VQSV 7)), (24)
2r—1f. a. 0.1
T=20,1,2,
v=101,2 .. 642

and P(5 > 2) and A (1 o
The sar in Bq. (23 o11(kY”, 7) are determined equally as in Egs. (18) and (21).

tions {17) and s vrnmb be easily calculated, when we realize that the solu-
) have such a character that the differencies pEY . p@
1

yield just
(o +2) —_ [le) __ (0)
T = R — ) (14 42,080, et ),
ce
l
. 1—2
N 7
— ) BP(ry = A® (1) (+2
/ \n.w 7 n+~QQ~ > *v Amu,.a.?lv = \wmﬁv =
J=1 Qu.ﬂw«n».o.u
2r—1f.a. 0.l
1—2

= (0) S (0) v 0
= A 2r WHN. el Aﬂ_wai.uv A%QIHVV\HM.Wua\nM vv Q.v _H.—. + »\_,?v \nMé ’ %vRMCA\nu ’ q\.: .

2r—1f a. 0. ™
Thus we get for «(k,, r) the result

—2

APk R 4
A (1. (0)
@ o= wim. e.l oy, 7) [{s0,} — 2N
kg, 7) = L 27— 11 a. 0.1
—2
1—114 ) (1)
T Ama\.M». e.l. (o3 (k, 7)) :%Mcwb - Amm.,wuv:xfmlw_«
2t —1f a 0.1
25)
We' ; A
note that we shall return to the case of solving Eqs. (11) and (12) later
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4. ASYMPTOTIC BEHAVIOUR OF & AND &.c

In the previous section we convinced ourselves that the functions af®
and f" are determined by Eiqs. (16—18) and that both series of the considered
functions are connected with the partial sums of the z,(r) polynomials. Before
investigating the asymptotical form of of? and g’ let us ask the question
how the {sY—"(r)} behave in the region of the large and small r. To answer it,
let us write at least some first polynomials from [8] (it turns out to be convenient
to write r instead of r + ¢, — this is allowed with respect to the invariability
of Egs. (11') and (12’) under such a transformation)

2o =1,

2z, =T,

2y = 13 4 3¢y,

23 = 1% 4 15,73 - Segr — 45c3,

24 = 710 4 4B5cyr? + 35cqr5 + Togrd — 525c,c,r® 4 4725¢3r — Cqm\wvow +

+ 21eqc,.

The behaviour of {s¢~(r)} for large r and finite ¢; (j = 1, 2, ..., ). depends
only on the upper index. It seems to be very difficult to find in general the
value lim {s//~V(r)}, because it is altogether difficult to get an analytical

r—> o
c; finite

expression valid for arbitrary z,(r). However, the mentioned limit for the
individual cases exists and is finite. The results of the limiting procedure can
be obtained also in the way used in [2], where the solution of (12') was directly
sought by expanding g into a power series of 1/r.

Forc, #0,¢p=c3=...=2¢;,—>0andr > 1 we have

BO
sU—D -, 26
A o W*VM Q. I_I Onvu A v
j=1,238, .1
0=20,1,2,...,1

where
.Ws —_— E .
) - .
2051(1 — j)!

Since according to Eqs. (17) and (18)

i X —2
U 2 1
B = (fsa} = (2DATL KD, ) X
i

i=1 o=
{

11



XL 4 A0 (kD r)a)] (27)
1=1,2 . . n
T=20,1,2 ...
and consequently o in Eq. (18) is~ . .
: S -2
, 209 (ky, 1) . J
K e N
\n.: + \na P
o= (2rfa.el
Awnlwhm.o; ) :
— DAL, 1) [L 4 A9, (0, a0 (27)
we see that for 7 > 1 the o« and B behave as
RMC = kAMNVNQm I?wv Aw%v
O S
I = vao N ({sfdiy — {(s2), (29)
= T 1. a. €,
Amnlunw.o;
I—2
pO = G2 (650 Y oy

i {s2 (s} — {sio,"})- (30)

A .

o= (2rf a, el )

AN«:THHFQ.N

J=23,4,...,1
T=0,1,2, ...

and z,; as in formula, (21). The corresponding-
waves follow from (15)

with the same rule for the use of z,
potentials for the various partial

N -2
ul(l,r) = —2 {0 — {89y + 240k, (31)
0= (2:f a el
A 2t —1f a. 0.1

Here [ stands for k, , kyy o by, voes kn.

—F

In the simplest case of ¢, 7 0 and ¢; ==

0forj > 2 with respect to Eq. (26)
we get

[l +.1)
(r+c,)?

Relations (31) and (32) for the sufficiently large r indicate that u™(k, r)

consists of the superposition of the exponentially decreasing potentials and

the potentials of the long-range forces decreasing in the limit > o rationally
(~77% k> 2). So.we obtain

for r— oo, ‘omitting the exponential terms.
and the terms decreasing faster than 7%, the centrifugal barrier potential
corresponding to the appropriate angular momentum 7,

uW(k, r) =

+ 240k (32)
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For r - 0 the potential w)(k, r) is lacking already in the l-wave mm%Ewno.ﬁom.
MM@ oint r = 0 the functions «", A, B and thus also the potentials
e $ = - AR I ~ .v I A .
Mw_m. wmm%_mn The regularity of the potentials in » = 0 may be EM@QM.@M@. by
i . i CDD poles (Sect. 5). On the other hand one
making use of the conception on poles (( . ther hand on
i i t is the rule (i. e. the singularity
ct the asymptotic behaviour as it is ¢ :
cwsgwm%mi inr .H.um:, but then we are obliged to admit some mzwﬁ_@ﬂmgmﬁ%
.Mos&ao%m on «? and B. For the region of the short distances it is then
con ¢ .
Eccmwmmﬂw to ask for satisfying the formulae
. : l
! , .
QQV N»M-.v
W L
Rm - ry ’ : r?

— v=1

Qv o
7

, : ts. Conditions (33) can be fulfilled by
where a{” and b} are some oouwmgam. Condi for Ar ) o of T (1)
a suitable choice of the integration constants ¢; in the solu . _.
and (12'). This result was verified in the considerably restricted case of solving
.uw@m A:\v and (12') in [9], but it is correct also in the present general case.

5. ARBITRARY PARAMETERS IN g(k, r) AND PARAMETERS
. OF CDD POLES

Now we can discuss the solution of Egs. (11) m:.m (12). In MMM»: M.”. we MMMM
that in the pure pole case, taking finite ¢;, no 9<w~@mﬁo% m_m cu Mwm MTC
in the r variable using the representation of .&5 function Q.QS Jm NOB @..mmwmm
In the variable k this function is analytical with @o exception of the M.o:% .
poles. For these reasons the results we have achieved for orw m:_:w ._M.z g mmrm
with n poles on the imaginary axis of w.:&% be o.xgbﬂ.wom to erm. m_mmz maw ies eoo he
type of discontinuities along the cut of the imaginary mwcm Ho«br»w,s” Lo = .
Therefore we obtain the solution OM—MQm. Hmvww pMM oMV me Mwﬂmwm:m MH nmmn@_w

ituting the sums in relations — v -
_MWHMM_UMM_MMMMMM of (19—21) both formulae (17) and (18) may be wxwwmmmw&

—2

©) v __ (0 ) (p
as one (denote next > ({sona} — {5t1)) a8 S5 _(7))
o= {2rf a.el
..\r.w.ullwn..ﬁ.e.N

BO(r) =" SQ_(n) (850} (U + AL (6 Mo E, ), (34)

“1
and since for the sum over j in Eq. (16) we have formula (27), we get imme-
diately
aW(k, r) = AWk *r[1 4 8O (1AL (k) ) +

13



2

-+ (0 v
kb SO AT, DA K, e, ) ar (35)

Oy — %0 - ©
0 = S0t (8 20} (U [ 49,0600, a0, nary.  (36)

v=0,1,2,... 041

In Eq. (34) % represents the set k,, k,
we have thus linear nonhomogen :
or a(k, 0) are known, Egs. (3

‘2> s kiy ...y kn. For o0k, r) and B{(r)
ous integral equations. If the functions 4®(k)

into our mmMNMMowzo4 - Their number is 7. Due to these constants, included
rogular. Tn ns In an unaffected way, of course, a®(k, 0) and B9(0) are
of the wrzoaw@www mwvg 1t was proved that BP(0) — the residues of the poles
on g(«, r) given by Eq. (8) for r-s 0 and k . ,

i £ ’ >0—a ;
MMM.MW wwﬂwcumaowm (positions and residues) of CDD poles. If lmo _Mumomwmosow
ot the CDD poles, situated in the gap between right and MM? cuts ow MMM

energy plane, and I, are their residues, the following has to hold (according

to [2])
1j2 0
P30 [ «o(/F, 0)az
—1)7(— e ’
& gy | JEw -5, (38)
AT Uz %
NJ@ Y 1 \wmwgov 1 Im2 (B’ 0)dE’
z (By — E,) + B T — - 2 (39)
i=1+#¢ e =1 e qﬂo E ..T@m

e=12 .12

h .
Wwhere the function 9(g, 0) expressed now within the framework of the

functions N(E, r) and D(E, r) has the structure
U2

[T@+ ) e
G

g Iy 1 [ KN@E, o)

N‘.\«LT@N T y—
1 0

DE, 0) =

Bl dE’)- (40)

i=

14

The residues &SS (j =1,2,...,1) occurring in Egs. (38) and (39) are deter-
mined in a general case by (36), thus

AO(0) = °S_(0) {s2(0)} A_ + % A0,(JE®, 000(|/F, ?.EV - (41)

In such a way Eqgs. (39) and (40) attest that the arbitrary parameters,
achieved by our method, correspond to the parameters of the CDD poles
and consequently, one can say, they represent the subtraction constants
of the N/D method. Hence there exists the explanation why the potentials
in formula (13) exhibit the regular behaviour in r = 0. The regularity of the
potentials in the origin is affected by the participation of the CDD poles
in the interaction of particles. It is obvious from Eqs. (35) and (36) that this
influence of the CDD poles upon the iteration of elementary particles
appears at long and short distances, as well. The iteration procedure applied
for instance on Eqs. (35) and (36) results in the superposition of the exponential
potentials in (13) which suppress the rational potential terms at short distances.
On the other hand in the region r — oo the exponential terms may be in turn
neglected and so._only in_this asymptotic region the contribution of the CDD
poles can be unambigously tested. It is determined by formula (29).

Let us consider an example illustrating the connection of the constants ¢;
with the parameters of the CDD poles. For one CDD pole in the plane £ with
the position —E, and the residuum I'; we have to take two functions g2 (r)
and p2(r). According to Eq. (41) their residues are

3c2 1 2 ._\M —
@) — ——2 {1 ——t— « (| E',0)dE'|> 42)
CXU R v LRl B ey C (R (42)
. 3¢, 1 2 B —
fP0) = ———1 + | |—+— al® 2\@:“ 0) dE’
) e} + 3¢, JAE o ET

we

The integration constants ¢, and c, from Eq. (42) correspond to the parameters
of this CDD pole on the basis of the equations

@ (J/E", 0) dB’
BR(0) = E, “, E| , (43)
Ve ® —E)
§<~\»
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B(0) = — Iy + B, _+I%HE®E.8 ag’ ||+
ki
- 0

E + E,

For the ratio of both residues ((0) and BE(0) from Eq. (42) it follows
B2(0)

e e

G ON
6. GENERALIZED NOYES-WONG EQUATION

MO.?H we have taken into account the analytical properties of the Jost
moEEos.AEoS exactly of g(k, )) as the necessary input in our considerations
ms.a the indicated method permitted to find the Potentials which are consistent
with these properties and consequently with the required analytical properties
-of the scattering amplitude. If we formulate the problem inversely |w in a
MMQ% =m=w.~¢5&arm dispersion relations — then we have to determine the scatter-

g amplitude from the left-h i iti i
e e b0 ¢ @Eﬁomo.@z@ singularities. The Noyes-Wong equation
. The Noyes-Wong equation for an arbitrary partial wave may be derived
m our approach without knowing the functions «2(k, ) (in the n poles case)
Let us ussume that o®(k, r) and BP(r) for r > 0 behave according to Eq. Awwv..

Then putting af) = me r'«(k, r) into Eq. (27'), we obtain a homogenous
system of equations for the constants o

2

here A otk

where A;” are constants, as well, and the partial su @)

by T, (100 P ms and A7), are defined
If instead % poles on the imaginary axis k one deals with the discontinuity

m 2 Hv >
m_\MOHH G~HO cut ﬂmﬂ@mﬂ m com HO&@ m\mﬂm\wo w, SHGT m & Mwm m“ 45 asses _ o t :mw

O () ) A
a;’ = A7k + S_(0)A2), (k) 0)A%), (&, 0) ad (45)

QEQQ — \mSQ& % ) 0 \_3 (v ) ’
¥4k + 87 (0) A5, (k, 0) A7), (k') 0)|a®(k') dk’. (46)
WEAW AW®(k) represent the left-hand cut discontinuities as the input quantities.
gs. (45) and (46) are the generalized forms of the Noyes-Wong equation

for two current types of singularities. In the particular cases of P and D
waves eq. (46) has the form in agreement with [9]

16

8

2 4
aW(k) = ANk) | |[—+ aw(k'y dk’,
E+ &k okl
2 3c2 2 4 2 4
a®(k) = A®(k) + ~s + ad (k') dk’ | -

E+k 43 \k ekt \k ok
Eq. (46) is the homogenous integral equation (it can be proved that if all
constants ¢; = 0, the equation becomes nonhomogenous) for the determination
of the functions a® (k) by way of which one can construct the S-matrix.

7. CONCLUSIONS

We have applied the non-relativistic inverse problem approach formulated
in [3] in the terms of the generalized N/D method to determine a class of po-
tentials including besides the superposition of exponential potentials the
long-range rational tail. The extension of the problem to the rational terms
is based on adding the poles of the various orders in the point k& = 0 in the
function g(k, r) defined by Eq. (6). In our considerations the function g(k, r)
has taken the role of the D(E, r) function in the k and » variables. It is to be
regarded as the main contribution of this method that the rationality of
potentials including also the centrifugal barrier is here determined by means of a
set of the polynomials z,(r). Among the properties which these polynomials possess
(see [8] in detail) one property is particularly remarkable — the recurrence

expressed by Eq. (22) —
2ra(r)e (1) — 22,1(r)2,1(r) + 2,-1(7)3(r) = 0.

Resulting from the symmetrical Eqs. (12') (when «? > 0) and being similarly
2 symmetrical equation, the mentioned equation can be written as

Zr_y{7)

Zyofr)

2

2y(r) = Zpo(r) | (2v — 1) dr 4 ¢y}~
and in this form it represents in a sense a sufficient condition when an integral
of a squared rational function is a rational function. The arbitrary parameters,
as the logical origin of which the recurrent equation may be considered and
the number of which is equal to the orbital quantum number I, were inter-
preted in this work as the parameters of the CDD poles.

Our considerations concerned the determination of the mentioned class
of the local potentials. In the following we shall try to use the obtained results
for the investigation of wave functions. The connection between the described

17



method and the standard inverse problem method of Gelfand-Levitan-
Marchenko is dealt with in [10].

APPENDIX

) (i) In the derivation of formula (16) we proceed as follows. Let us introduce
instead of the function g(k, r) the function

gk, r) = ekrh(—[, r), (A.1y
Substituting (A.1) into (10) one gets
B (—k, r) + 2ikh/(—F, r) —= ud(r)h{—k, r). (A.2)
u.w@. (A.2) has to be fulfilled for every k, thus also for k = —iki/2 (the index
¢ =1,2,..., n). Therefore, we have

[2'(—F, )i = —iky2 T+ Ed[R (—E, 9] —ikygz = UG (r)[R{—E, e = —ikf2 (A.3)
Compare Eq. (A.3) with Eqgs. (11') for o). We see that the following relation
must be satisfied

«a
o ‘Q@ . \s.v = NQ.MCNQQQAIINP Q.v”_a = —iky2> A»P%Y

AN - -
where AP is an arbitrary constant and the multiplication factor A%k;
T

is taken for dimensional reasons. Owing to Egs. (14), (A.3) and (A.4) the
solution of (11’) has the form

: ® !
ik, 7) = a0ewr |1 49 O N2 g |
by + ks / kif .

j=1

where k stands for the set kyykyy ook, ..., k.

?.: The solution of Egs. (1 ') and (12') cannot be directly found for an
ﬁ.gﬁ.mw‘% .Nu .vmom:mm the solutions for a given [ are associated with the solutions.
of the individual foregoing cases with smaller values of I. We want here to show

one particular case of solving Eqgs. (11') and (12') for [ = 3. System (11')
and (12’) has the following form*

o + k] + 2B + oy)oq = 0, (A.6)
Bl — 2B + 208, + a,)p, = 0, (A7)
By — 265 + 2(B, + w,)fy = 0, (A.8)

By + 2B, + )y = 0. (A.9)

* . .
Up to Eq. (A. 17) in the caleulations we suppress the upper index of o« and ph-
n

The index ¢ runs from 1 to n; o, means > a
-
#=1

18

Let us multiply Eq. (A.8) by f; and Eq. (A.9) by —8, and add. We have

mmmu - mmmn - wmmmu = 0.
This equation may be integrated. Since the functions «; and f; must fulfill
the boundary conditions

lim o® = lim %..\ = 0, TP.MOV
¥ >0

>0

the integration constant is to be taken zero. We get
BsBs — By — 3 =0,

or

. B

Bo— b= Pa- (A1)
Bs
Eq. (A.11) has the solution
B = & ( ‘. Bse e dr + ¢y),

which leads to the relation

Bz = Bs(r + ¢, (A.12)

with the arbitrary constant c,. Further it appears to be convenient to write
shortly » 4 ¢,—> r. Hence (A.12) is

Bs = 18;. (A.12%)

Similarly if we multiply Eq. (A.7) by §. and Eq. (A.8) by —p8, and add, we
obtain

B1Bs — BaBy — 2Bsfs + 23 = 0. (A.13)
Next add to Eq. (A.13) Eq. (A.9)
BiBs — Babr — 2BsBs + 2(B18s + B3br) + B3 + 20,85 = O.

This equation will have the form suitable for integrating if we substitute
its last term by an expression which we construct by the analogical canonic
combination of Eqgs. (A.6) and (A.9) as above, thus

BBz — Bafy — 28382 + 2(B:fs + B3By) + 5 + (A.14)

bou
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Since with regard to (A.10) one can take as zer

o also the further integration
constant, after integrating and some arranging,

Eq. (A.14) leads to the result

, 2 \wm 1 1 mm oy 2 9\“
o) b= [—— =21 2 —
By r B, B 1 g + ks + B2 + v &
Whence for #, we have
B d]| ¢ oy
=11 —]—1+2-"=]{4d 2dr 4 ¢y
b1 r dr| g, + s 7+ | r2dr 4 m,
and finally
1
Br=—14 27} + WE + 3c,), (A.15)
r \—wk 3r2 .

¢, being the new integration constant.

Take now only Eq. (A.7) into our calculations. Combining the remaining
equations of the system so that it Is possible to eliminate the corresponding
terms wo&\wt wﬁwm? mﬁnm? one can write

ofm._‘ - an_

ky

BL — 2By + 28,8, + 2

»m@erm‘mij (A.16)
ke Tk ,

” !

%ufly — %8, «, %y tuffy — B
4 > 8B At + 8 =0
k2 k, ky K

(]

If we integrate (A.16)

taking the zero integration constant owing to (A.10)
and substitute

1 NM 3r2 Nm
r 2 ’ 34 3¢, 2z,
we obtain
%ul . %, . %p 2 oy ,
L+ 2— %~|wihmﬂ+\wm+ﬁlwr+wfl’u, mmf
ky by k, %k,
3 9\_ 2 [a R“ 2 «
— 2|14 2% 4 gt | 47 - +4t2g, 0.
ky, » 2 \k, K z K,

Using (A.15) for B the last equation will already be dependent on f, only

7 .

AP 2"+ 8, + 9?@, + A (A7)
ky
Nh o, N\ o B
— =2 2 T B 28, + 0,80 = o,
Zy N&.H 2y \n:
where
oy 2y o 2, 2y oy
Ay =14 2— 4 22 + 28=——
e T
®, 2 ot «, N R B B
O, = 41 42— 4 2 22| — + 2 s
! ky _ 2y k, k2 u\k & 7 &
2y \ oy u“ %u
Oy = =2\ —||— +2——}
2 2 ) \B2 oz K
! o,
Fe S RIS B (A.18)
2y \h&

It is to be noted that (A.18) is the solution of the equation analogical to Eq.
(A.17) when I =1, i. e.

o , o
1+ M!h \,“wm: _ mh\wmc 4 mmcm - 0.

Eq. (A.17) is the Riccati differential equation for the function #®. The parti-
cular integral of Eq. (A.17) is

oo = .
From the Riccati equation (A.17) we get the Bernoulli equation by the trans-
formation

P =60 + 9. (A.19)
Putting (A.19) into (A.17) we find the Bernoulli equation for the function @
2 2 ,
Ay’ + 2| = — 2| Ay — AL g+ 2 = 0. (A.20)
2 2y

.,—,J@Ezm

[S]
f—



1
v\”[u Qu ﬂou Ab.wﬂv
@
for y from (A.20) one obtains
v\ +1]2 Wmllnml mml — IW;
2y 2y A, A,

This implies
y=e Imcunulnubuu+5\_~v_”.—.\Hlu®mA_=m».!—=N.+_=\~uv Q». + O.Lu

where ¢, is the third integration constant of the case [ — 3. Hence computing
the corresponding integral we have

Yy = ‘I\Hw —rs + Mwnmﬁw — = + (7% A>MNV

Thus by (A.18), (A.19), (A.21), (A.22) we obtain the result

oy Zy oy 2 2y Oy
-y s VT T T e
7 r ¢
“ lwm+wnmil.fm+e»
5 r

If we introduce into the polynomials z, = r = 7 + ¢, 2, = #? + 3¢, the (new
polynomial z; = 7% | 15¢,03 |- 5cyr — 45¢; and if we substitute also 4, =

o,
=14 MMR“ we can write the result (A.23) more comprehensively
173
2
2y 23
BP(r) = —A, + 5—A4,. (A.24)
% %124

Now we find easily according to (A.12), (A.15) and (A.24) the expressions
for the functions 8 and g9 :

N\
B = —H(pD — pv), (4.25)
) |
(3) ! Nm (3) (1)
By = NI{N:AP — A1) (A.26)
1 *~2

(iti) Egs. (17) and (18) for I = 6, 7 have the following form

22

9

“1 5044 1221 4 4)
B0 = 38— (1 + Ay) + T—(1 + 4,) + 6>
2

2% 2934 Z4%g
2 2 Nm &w NM
(6) __ Nlo%ﬁv + w + mlmml Amw& . mmwvv + o ..T 5 .S 9—— CwMe . RM»J.
b= 2z ! Z 2125 2, ERA 242
29 2 i Py Fofs {opey; )
O = 5z, — (B — BD) + 2, |5— + 9—|3— + 7 (B3 1)
ps” = 5 23 (b )+ = 23 + %5 \ ReR3 %179
z 2s [ 22, 2923 24 ’
© = 51O — fO) + |5t 4 o230 L T 5P ) (g ),
o 23 ! ! 23 %5 \ 2973 %129 Zg%1
(6 ) (4)
mmv = 92,—(8," — £,
25
2
BY = 9—(B® — ),
25
22 23 2 %
BO = (14 Ay + 5—(1 + Ag) + 9L + 4g) + 13——(1 + 4,),
! % 223 2325 252q
23 & % (5) (3)
P =3— (P — N+ (37— + 7 ) (67 — B +
2% Z2g %924
2 2 2
z z 25
+ {3 T 1] (B — B,
ZgR9 292y e
Z %1 % [FePs # ) _ g®
BO — 318D _ O 34 T—[—+35 " — £y) +
PP =3 10 — B + |3 T (PR 5
2z 2z 252 %124 i
+ ww 4 .NN'u @ + mlh —+ MHNW“ 6 Ee -4- 9— Ammﬁ - mmuvvu
2o 24 \Z1Z ey % \ Zi%a Zo%3
z 242 Z%s
23 23 25 [ Re?s R %
(7) — 7, " (BB _ BB Tz,— 4 11z,—1| 6 + 9 +
%» - .NN_ 2y Ahw .mu v + 4 Zy + nua 232y 2923 2129
x (B0 — B,
z z 292 %1% 20”3 %y
B = TP — p®) 4 |12 4 6 g g™ T L 5P N
e 2 ) ! 24 Ze \ 2a%4 Z2s 2429 2%

x (87 — ),
23



- 2 .
B = Nz, —(B7 — ),
~6

- Nm - 5
A= 1= (B0 — ),

6

where
Xy
Ay=1+4 2—:
ky
Oy 1 oy
A= 14 27 q g,
Ly z k,
: oy 322 oy 3z,
\r =1 + M.IMA |T MNL[wlT erw.fmlv
ky, 22y kK 22 k)
2 9
%y 2y %\« Zy Oy 2y oy
Ap=1 4 2= 4 92| 2 4 52 |H ww.mu_lm|+ﬁ¢.ui|».v
k, 2z 2,23) k2 2, k3 zg ki
2 9
oty 2: 23 \ o z 23 [ %23
Ag= 142 = o3 4 72 | 4 galg 7t | ;T8 f%0%
ky 2R3 2924 Nﬁ 23 24 \%12g
2 Vo 23 oy 23 oy
+ 5—— - + (29 .72, — oy + 25, 7— .
22 | kS zy k, zy K,
ete.
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