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ON ADMISSIBLE RELAXATION FUNCTIONS IN THE THEORY
OF LINEAR VISCO-ELASTICITY

RUDOLF PREVRATIL, Bratislava

The mechanical behaviour of a visco-elastic body is defined by the re-
laxation function of the material. The specific mechanical work done in the
process of deformation of the body is defined by means of Stieltjes’ integral.
The basic thermodynamical laws demand that this work should be non-
negative. This condition defines a class of admissible relaxation functions.
Two theorems giving necessary and sufficient conditions of admissibility
are proved in the paper. Finally, several types of admissible relaxation
functions are discussed, including some ,,paradoxical* relaxation functions.

1. INTRODUCTION

In the-present paper the pure tension (or compression) of a linear visco-
-elestic body is discussed. The class of bodies to be discussed here is defined
in Section 3 by a class of linear integral operators which transform the strain
&(t) into the stress o(t), where ¢ denotes time. Every operator is given by its
kernel y(t), which is the relaxation function of the material.

We confine our considerations to the time interval 0 € ¢ << o0 and denote
by W(e; T) the mechanical work per unit volume of the body done by the
stress o(f) on the strain £(t) in the time interval (0, T). It is assumed that the
body is deformed isothermically. In this case, the basic thermodynamical
laws imply the condition

W(e; T) > 0, (1.1)

which must be satisfied for every &(f) and every 7' > 0. The condition (1.1)
imposes some limitations on the form of the relaxation functions, or, using
an alternative formulation, it defines a class of admissible relaxation functions.
The necessary and sufficient condition of admissibility is given in Sect. 4.
It is shown that the class of admissible relaxation functions is substantially
wider than the class usually considered in the theory of linear visco-elasticity.
Some of the relaxation functions, which belong to the first class mentioned
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-above but do not belong to the second, define the paradoxical behaviour
-of the respective materials.

Breuer and Onat [3] performed a similar investigation, starting from less
general pre-suppositions about &(t) and using the more strict condition

W(e; T) > o0, (12)

which they demanded to be satisfied by every e(t) non-vanishing in 0, T>.
‘They demonstrated that the condition (1.2) was implied by the uniqueness
-of solution of a class of boundary-value problems in the theory of linear
visco-elasticity. The authors derived the following sufficient conditions of
admissibility of the relaxation function in the sense of the relation (1.2):
the function y(t) should be continuous, positive, decreasing and convex from
bellow for 0 < ¢ < o0, with the consequence that lim w(f) > 0 as £— oo.
It was then demonstrated that the exponential relaxation functions are
admissible in the sense of (1.2). .

In the present paper, the condition (1.1) is used for two reasons as a starting
point rather than the condition (1.2). First of all, in the case of a perfectly
elastic body which is also involved into the class of bodies discussed here,
there exist some s(t) non-vanishing in <0, 7 such that the condition (1.2)
is not fulfilled. Moreover, the relation (1.1} enables us to give conditions which
are not only sufficient but at the same time also necessary for the admissibility
of the relaxation functions. The examples given in Sect. 4 show that the existence
of |, paradoxical“ admissible relaxation functions is not connected with the
difference between the relations (1.1) and (1.2). Some of the , paradoxical
relaxation functions are admissible from the point of view of both these
relations although they do not fulfil the conditions given in [3].

2. MATHEMATICAL PREREQUISITES

We shall discuss first the function with a bounded variation and the in-
tegrals of Stieltjes.

Let f(z) be a function defined and bounded on the interval <a, b>. Consider
a division

=Ty < & < ... < Zyp_y < Ty = (2.1)
of {a, b> and put
m—1
V=2 1f@in) — f@)]. (22)
i=0

Definition 1. The function f(x) has a bounded variation on the interval {a, b>
if there exisis a constant C such that
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V<C (2.3)
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1018t 1 a, by [5, VIIL § . .
.wcwﬁaz MMQQV&@M@M@MM@MV AMm v?aMoMWQdm defined and bounded on the interval <a, b
et f(x) &
Consider a division (2.1) and put s
x; € & < Tirgs 1 = max (®i+; — %)
o S “ i b nction
Gnition 2. Stieltjes’ integral of the function g(x) with respect to the fu
Definition 2. .
f(x) on the interval a, b is defined by
m—1
w g(z) df(z) = lim > gE)f(@en) — FED)
a 0

A0 i=

(2.5)
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187 the particular choice &w &. . . o
e §de“ §~M~3~ (2.5) exists if glx) s 8§:.§§o§m~o3m g
waouom- u\ f(z) has a bounded variation on the same 1nterva {5,
{a, and 1
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5.
Hloo.onooﬁm,ugiwm .
" ».%.A erov owwopa?bosos defined and bounded on the rectangle ¢ < ¥
Let f(x, ¥ o1, ¢

¢ < y < d. Consider & division .

a =12, < < L Ty < Em=Db

cHw\oAQHA...A@sIHA?@H&

of the rectangle and put
2.7)
"S5 - )+ Sl
— f(@irrs y1) — F@i, Yin
= | (@15 Yr+1) J(@ina
"=24

y) has a bounded variation on the rectangle

Definition 3. The function f(z, e gt

; ists @ cons
a <2 <bc<y < dif there ext .o s
of the rectangle [4, 111 § 59].

has a bounded variation
jation on {a, by and h(y) 8 & ,
e vossmmvﬂl,\wﬂwnm h{y) has a bounded variation on the rectangle
s &vn%ng\M\a,AN\ &lﬂEm statement follows from the relation
a<x <o cs 5 G

_.\.A&TTT ns.rwv zl‘}.a&+: ”Sv - .\_AHT m\.r.:v ..T.\_A%T ”51 =

for all the divisions (2.6)

(2.9)

= glwis) — gl X yza) — Byl

0_ 1 € a 0 r ctan ~®
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2 <z <b c<y < d Consider a division (2.6) and put

T S &0 < T Y <y < Yo (2.10)

A= max [(Tir — @), (Y141 — yy)).

Definition 4. Stieltjes’ integral

of the function g(z, y) with respect to the SJunc-
tion f(z, y) on the rectangle a <

< b, ¢ <y < disdefined by
d m—1 n—1
[ y) dfm,y) =1im S S g&, ny) x

>0 i=0 j=0

R

X @i, yssa) — f@inn, 91) — flae, yin) + f(ar, 95)) (2.11y

if the limit on the right-hand side of (2.11) exists and does not depend on the
division (2.6) and on the particular choice of the points &;, 7,

Theorem 2. Tke integral (2.11) exists

a<z<b c<y<dandif flz,
tangle [4, 111 § 59; 6, § 4].

if gz, y) is continuous on the rectangle
Y) has a bounded variation on the same rec-

We pass now to the positive definite functions. The following definitions
and theorems were taken from [2,IV §§18—

to the case of real functions.

Let D(«) be a function defined and bounded on the interval (— oo, o).

20]. We confine our considerations

Definition 5. The function D(a) is called distribution if

it increases mono-
tonically on the interval (— oo, o) and if the relation

D(a) = 3[D(x + 0) — D(a — 0)] (2.12)
holds for every o.

It is not difficult to show that any distribution has a bounded variation on
(00, ).

Let f(x) be a function defined and bounded on the interval (— oo, o),
continuous at every finité x and even: f(—=) = f(z).

Definition 6. The function f(x) is positive definite if it satisfies the relation

.MH .MM?I 7)oigs > 0 (2.13)
i=1j=

Jor arbitrary points x,, x,, ..., zym and arbitrary real numbers o, , o,

Theorem 3 (Bochner’s Theorem). The function f(x)
only if it can be written in the Jorm

ceey Om-

is positive definite if and

flz) = woow (az) dD(a), (2.14)

istribution: D(—«) = —D(a); D(0) = 0.
i is an odd distribution: D(—a) .
%WM M.@NMMWE (2.14) may be written in an alternative form

@ (2-15)
— 3 (ax) AD(er).
.\.ARV .h. co8

From (2.14) or (2.15) there follows
) f(0) = D(o0) — D(— o) = 2D(0). (2.16)

. g . - . L ®
Th 4. The sum and product of two positive definite functions is a positiv
eorem 4.
definite function.

> WORK
3. THE RELAXATION FUNCTION AND THE SPECIFIC W

i sion).
jected to pure tension (or compres
i a homogenous body subjec or o
M¢NM~MM%MM5¢ the wmﬁi: &(t) of the body has a vocumom variation on {
for every positive 7' and put £(0) = 0.

Definition 7. The body is said to be linear visco-elastic if the relation
e : |
| 0 4 3.1
olt) = E [ p(t — 1) de(z); 0gt<gT (3.1)
0

b The function
. t) for every positive T.
the strain &(t) E& the stress of . 1 B
Nxmww«.w .@QNMMM& and bounded on the interval 0 < t <T 0 and continuous a Y .
Py o5 o : iti tant
; ite t; B is a positive constant. ) ial th
QEMJ.M\@W ﬁ\mﬁ%ﬁm M\.E is called the relaxation function Om erom NMWSMMM.@ ap_o
em ec@ is called the instantaneous modulus Om. elasticity o @o bt
cons ws: o later that (0) > 0. Thus it is possible to owoomm o b
%mvm mw mmé_&or will be supposed throughout the rest onMmMoNngm .
- jation is more appr
5 ion that e(f) has a bounded varia ( . . 1v diffe-
@wwﬂw_ﬂwﬂwww:mioﬁ Aar@s the usual assumption .%.Ee g(t) 18 omsﬁswmuﬂww by,
#.VJW ble: it allows, e. g., an instantaneous finite &omoz.:@. _cdm Shoe SHIE
wm: " m%.ﬁod mSv.l 0 together with the zero lower :M:n M& A r” ol
he condi = , .
: 0) = 0 corresponds ! ,
i in (3.1) and its consequence o . : i terval
_:ammwﬁe.ﬁﬂﬂar“e the body has been left undisturbed in the time In
assumpti
— for instance, [1, I § 21). ) . . Y g
A, /ozw@bmvwm_a_awmmosmm now the specific mechanical work W(e; T') done by
stress oft) on the strain <(f) in the e:wm_ w:8m<wwmwmwwow. in paper [3]. Consider
. cas
Let us investigate first the specia
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that e(f) has a derivative &'(f) = de(t)/dt which is piecewise continuous on
<0, T'>. In this case, (3.1) is replaced by the relation

. 1] 2 .
a(t) = E[y(t — 1)'(7) dr (3.2)
0
with the usual Riemann integral, and the specific work is given by
T
W(e;T) = [olt)e'(tydt = B [ [ vt — 0)e't)s'(x) dt dr. (3.3)
0 Q7

The symbol Q' denotes a triangle in the plane {, 7} given by 0 < ¢ < T';
0 < 7 < t. If we define now the relaxation function y(f) also for the negative

values of its argument by w( —&) = y(¢), (3.3) may be re-written in the alter-
native form

W(e; T) = 3B [ [Pt — v)e'(t)e'(z) dt dr, (3.4)
2

where 2 denotes a square given by0o<t<T,0<v<?7.

Let us return now to the original assumption about the function (t)-
It follows from the results of the Definition 3 that the function f(t, 7) =
= g(¢)e(r) has a bounded variation on the square 0 < ¢t < 7T, 0< <™.
Further, it is obvious that the assumption p(—2) = p(t) and the continuity
of y(t) imply that y(t — 7) is continuous on the same square. It is thus.
possible to define the specific work by the following

Definition 8. The specific mechanical work W(e; T) done by the stress oft)
on the strain e(t) in the time interval <0, T’ is given by the Stieltjes integral

W(e; T) = 3E | [ w(t — ) d[e(t)e(x)]. (3.5)
2

In order to demonstrate the physical relevance of this definition, we shall
show first that (3.5) is reduced to (3.4) if ¢'(t) exists and is piecewise continuous:
on {0, T". Consider a division

O=t <t <...<lpmyg<tm=T (3.6),
of {0, T"» and put
h < b < [ 7 = max (fg4; — ). S (3.7
The relation (3.5) and Definition 4 yield
m-1 m-1
Wie;T) = 3E1lim 5 5 i — &) [eltes) — e(t)] [e(tyn) — &(ts)],  (3.8)
450i=04=0

where the limit depends neither on the division (3.6) nor on the particular
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hoice of &. Thus we can choose the division (3.6) and the points {; such that,.
O -
according to the theorem on the mean value

e(ter) — e(te) = & (Fk) (birr — te)- (3.9)

After the substitution of (3.9) into (3.8) we obtain

W= }E :BsM~ ngﬂsS — B)e'(ta)e' (tg) (biey — ) (510 — ), (3.10)

20 i=0 j=0

ich i iti Ri ian i Smﬁim: (3.4).
hich is the definition formula of Riemannian in : .
" aw& shall present now the resulting formulae for the mw@.a_mo work, o.vnmsb.mm
from the relation (3.5) for two types of the function &(f) which are not piecewise:

continuously differentiable on <0, T".
Consider first a single-step function

g()=(0for0 <t <
Cfort, <t<T, (3.11)

where 0 < t; << T and C is a constant. The equation (3.5) yields
W(e; T) = 3E C?, (3.12)

i. e. the specific work in this case is equal to the specific work for an m_omorwno_%,

elastic body. The same fact follows from that w.ms.n of Awro ermoq o.m ”Somm

visco-elasticity (the part less general from our @EH.; of Soé.v, which is base

on the rheological models instead of the relaxation mﬁboscm._m [, T § 14].

This also confirms the correctness of our definition of the specific work.
Finally, consider a multiple-step function

&ty =(0for0 <t <t
Cy for ty <t < tray, . (3.13)

where 0 = t, < ... < tm < tm+; = T and C are constants. The equation (3.5)
yields in this case

W(ey; T) = 3E(C: + CE+ C5 + ... + O + (3.14)

+ 2[C,Coplty — 1) -+ C.Opw(ts — ) + ... + Q»Qﬁﬁ@i — )+
+ Colaplts — ) + ... + QmQﬁ@QS — &) +

+ CniCntpltm — tm 1)1} = M M Byt — £1)CiCy.

i=1j=1
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4. ADMISSIBLE RELAXATION FUNCTIONS

The considerations presented in Sect. ! form the basis for

Definition 9. The relazation Sunction y(t) defined Jor negative values of its-

argument by y(t) = w(—t), is admissible if the relation

W(e;T) > 0 (4.1)

s valid for every &(t) with a bounded variation on 0, T and every T > 0.

We shall demonstrate that the following theorem holds for the admissible

relaxation functions:

Theorem 5. The relazation Sunction is admissible iof and only if it is positively’

definite.
Proof. Sufficiency : Consider a division (3.6) of <0, T> and put

o) — elte—1) = ox; tr, < & < by (4.2)
. A = max (t;, — t_y).
The relation (3.8) yields

mn

We;T) = 3Elim > 5 yi — t)oios . (4.3)

A0 i=] j=1
If the relaxation function is positive definite, it follows from the Definition 6
that the sum on the right-hand side of (4.3) is hon-negative for every division
(3.6) and arbitrary choice of Z, . Passing to the limit, we obtain (4.1). Q. E. D.

Necessity: Suppose that the relaxation function is not positively definite,.
i. e. that

n m
2, 2 9ti — t)oigs < 0 (4.4)
i=1j=1
is valid for certain points # and numbers oc(k=1,2,... m) We may assume

without loss of generality that

oH?A?A:.A&;A?_iH%. (4.5)

Let us choose now a multiple-step function £(f) given by (3.13) such that
Cx = k. The relation (3.14) then yields

Wiew; T) = 3B > > y(t: — t)oio; < 0, (4.6)

1=1j=1
which is contradictory to the condition {4¢.1). Q. E. D.

Combining Theorem 3 and its consequences with Theorem 5 and taking
into account the condition ¥(0) = 1 we obtain the
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i issible 4 if 4t can
Theorem 6. The relaxzation function () is admissible if and only if
€0 .

be written in the form

T 4.7) .
(t) = [ cos («t) dD(w), (4.7)
0
i sstributi hich the conditions
- where D(x) is a distribution for whic. .

D(0) = 0; D(o0) =1

.asaﬂwaam. 1l finish the paper by presenting several types of admissible relaxation
e sha

W.—HHHORHOEE . H& 18 HMOR &mmﬂ.ﬁﬂﬁ. RO T @m&ﬂﬂN@ &wﬂ@ w~u w mHOWB OF@HPGG@H&M&HOW Qm ﬂr.@ ma-
ter _m.ﬂm corres @OH&&H#N Ro &ww@@@ T @wm.un@ ».POHH W—MU.Q —.,._.Ouﬂm wm one OQ\H—W@@ mn ﬂc accour :m
V
T. “m. A V 8 A v 8
1 p& &wﬂ@ —HHHORHOHW .@g (4 1 QQ —Hgﬂ QNO@@& RWHQ mu°~=—.. t= o to 8~H® tress o A&

induced by the strain

gt)y=(O0fort =10 “s)
1fort> 0.
Let us consider the distribution
2 x (4.10)
e =Sy 0.
Do) = M arctg g k

. i ion function
‘Substituting this distribution into (4.7) we obtain the relaxation

y.(t) = exp (—klt]). (4.11)

Similarly, the distribution

2 % (4.12)
Dy(a) = IﬂIMQ« arctg ki
i=1

which fulfils the conditions

4.13
SCi=1; € >0; k>0, (4.13)

gives the relaxation function

| . S 4.14
poft) = > Crexp (—kilt)). _ (4.14)
@.nu

— ——mw —aO_N Nm: — S —ﬂ_: % ch. wmswpﬂ
Q are m.m\awrm_ﬂ m &ra R:GQH.
' on “m.ﬂﬂw.w@»ﬁosm Om. ru . V
|®~@wﬂ~6~ﬂ w . HWHOWG WﬁzOﬂnozm 88, Rﬂmw.wu @ﬂmo ﬂ~H® more S RH nOﬂ T me\ —.\—OmH A 1 w
V1SCO

.and the conditions given in [3].
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The distribution

Dyfa) = {0 for a = 0
1fora>0 (4.15)

corresponds to the relaxation function

yslt) =1. (4.16)

It is the relaxation function of an absolutely elastic material. This function
does not satisfy the relation (1.2) and consequently it does not fulfil the condi-
tions given in [3].

The distribution

Dya) =f0for0 < a < k
tfora>k; k>0 (4.17)

corresponds to the relaxation function

Y4lt) = cos kt. (4.18)

This function does not satisfy the relation (1.2) and, moreover, it defines
a paradoxical behaviour of the material. If we subject the body to the unit
strain given by (4.9), the stress induced thereby in the body will be equal
to E cos kt, i. e., it will pulse about zero. It is also paradoxical that in this
case a permanent strain can be obtained without applying any work. This
could be done for instance by subjecting the body to the multiple-step strain

Ofort=0
e(t) = { 8/2 for 0 < t < w/k o (4.19)
d fort > n/k

where ¢ is the value of permanent strain. A relaxation function obtained

from w,(t) by a process similar to that of deriving the function y,(t) from ,(t)

has similar paradoxical features. :
It is a consequence of Theorem 3 that the function

>

¥5(t) = exp (—kylt]) cos (kyt) (420

is an admissible relaxation fanction. The stress induced by the strain (4.9)
pulses as in the previous case but its amplitude decreases with time. However
it could be proved in this case that the function s5(t) satisfies the relation (1.2).
The strain &(t) non-vanishing on <0, 7’> can be thus obtained only by applying
positive specific work. Moreover, the function w; does not fulfil the condi-
tions given in [3].

>
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