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KINETIC ENERGY DISTRIBUTION FOR IONS REACHING THE
WALL OF THE DISCHARGE TUBE AT THE LOW-PRESSURE
REGIME

VIKTOR MARTISOVITS, Bratislava

The distribution function for the energy of ions reaching the wall of the
discharge tube at the free-fall regime is determined in dependence on the
radial course of the potential. The graphical results are presented for a mer-
cury positive column at various Debye lengths. The maximum energy is
given by the floating potential. The width of the maximum of the distribu-
tion function is approximately equal to the thermal energy of electrons.

INTRODUCTION

The radial potential distribution in the discharge positive column has an
influence on the energy distribution function of ions reaching the tube wall.
The ions formed at the wall are accelerated by a smaller potential drop than
those formed near the axis. In the positive column at low pressures the loss
of ion energy caused by collisions with neutral particles can be neglected
and therefore the distribution functicn of ion energy can be calculated directly
from the radial course of the potential and the ion deusity. A stationary and
homogeneaus column is supposed during the following considerations.

FORMULATION OF THE PROBLEM

Let the function U{r) indicate the potential course in a radial direction
(for r = 0 is U = 0). The electron density distribution in the radial direction
can be determined by means of the Boltzmann factor

n-(r) = no exp [eU(r)/kT-], (1)

where ny is the electron density at the tube axig, 7' is the electron temperature
and e the elementary charge.

For determination of the energy distribution function it is necessary to
find out the distribution function for the ion velocity f(r, v) normalized so
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that we have

n4{r) == Wo flr,v)vdo.
)

The function f(r, v) does not depend on other coordinates because the column
homogeneity in the longitudinal and azimuthal directions is assumed. The
function f(r, v) can be determined from the Boltzmann kinetic equation which
in the case of cylindrical coordinates and in the stationary case has the form

v wdﬂ.fﬁ ) 4 alr) auf(r,v)
T or v v

= Nr,v),

a(r) = — (efmy) dU(r)/dr is the radial acceleration of the ion and N{r,v) is
the collision term representing the number of ions formed in a unit volume of
phase space per sec. We assume that the ions are formed exclusively at the
electron-neutral molecules collisions and that their initial energy is zerc. The
collision term then has the form

1
Nr, v) = an{r) — )
v

where « is the rate of ionization and d(») the Dirac function.

DISTRIBUTION FUNCTION OF THE ION VELOCITY

Under th2 assumptions mentioned above the solution of the kinetic equation
has the form

1 * O{v? + (2¢/m+) [U(r) — U@1}4]
- | eanlo) =
LA {v? + (2¢/ms) [U(r) — U(o)Tv2

0

do

flr,v) =

By using relation (1) and substituting » = R(R is the inner radius of the dis-
charge tube), we get the function for the distribution of the ion velocities at
the wall
i
angy

R,v)=—
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oU(o)] 8122 + (26/my) [U(R) — U@
KT- | {0 + (2efms) [U(R) — U@

do .

¢

0 exp
J
0
After integration we have
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where o* is determined from the condition

1 mv?
Ule¥) =~ —+ U,

U(R) = Ur is the potential of the wall.

DISTRIBUTION FUNCTION FOR ION ENERGY

From an experimental point of view it is advantageous to know the distri-
bution function of the ion-current density j. dependent on the kinetic energy
by which the ions reach the wall. The ion-current density for ions, having
a velocity from the interval <v, v + dwd, is dj;+ = of(R, v)v dv. If the element
» dv of the velocity space is substituted by the element dW/m,, where W =
= } m,v? is the kinetic energy of ions, we get

. ong eU(e*)| 4w
djp =—-—e*exp|— —| 7 -
ek - kT- | U'e™)
while the condition for o* acquires the form U(g*) == W/e 4 Ug. If we denote
the inverse function to U(r) as X(U) then 1/U"(¢*) = X'[U(e®)]. Let O(W)dW =
= dj+/jo be the distribution function of the ion-current density, then we have

oy B o (W AeUr\ .
D(W) dW = — 22 — X(We + Ur) X'(Wfe + Un) exp Hrolr) iw,
eR jo ET-
where jo is the total ion-current density at the wall, while jo = — angd/eR,
where
la.ﬁm
w U
A= | X(Wje+ Ur) X'(Wje + Ur) exp s%m.hm aw .
) _
The final form for @(W) then is
1 W +eU
@) AW = —- X(W]e + Un) X'(Wje + Un) exp lﬂﬂm aw. (@)

DISCUSSION AND GRAPHIC RESULTS
Tor the determination of the distribution function it is necessary to know
the radial course of the potential. In the region of the quasineutrality the
potential course is given by the Langmuir — Tonks theory [1] in the form
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s = |/n (1 — 025 — 0:026,2 — 0:00657% — ...) , ‘

where s = ra(m/2kT-)"/> and 5 = — eU/kT-. This theory is applicable for
the inner part of the positive column only, because near the wall a plasma-
-sheath is formed. The boundary, where the Langmuir-Tonks theory holds
no more, is given by the values so = 0.7722 and 7o = 1.155. If the Debye
length is much smaller than the inner radius of the tube, it is possible to neglect
thie ionization in the sheath as well as the sheath curvature. Conssquently,
for the potential course in the sheath the Ott results [2] can be used. The
resulting potential course was obtained by a continuous connection of both
courses by a graphic method.

The maximum width Wy of the distribution function ®(W) is given by the
potential difference Ug between the axis and the discharge tube wall. This
difference is estimated precisely enough by msans of the floating potential Us{2]

1 EMy.
Wo= —elUgp= —eUs=—kT-In——; ¢==2718...
2 27m—

As the exponential function and the product XX’ decrease with decreas-
ing W in the relation (2), the function (W) reaches its maximum for W = W.
In the direction of smaller energies @ decreases approximately as x exp x, 50
that the width AW of the maximum of the function @(W) is given approxi-
mately by the radial potential drop across the quasineutrality region, where

oa

(/ALY .
2

Fig. 1. The normalized functions @( WikT)
for low pressure discharge in morveury
vapours: a) /R = 0, (d/R = 0); b) A/R =
= 0-01, (&R = 0-068); ¢) h/R = 0-0315,
(dfR == 0-215). d is the thickness of tho
plasma-sheath.

the greatest probability of jonization is. Thus
AW = nokT-.

Because of very little probability of ionization in the plasma-sheath, @ obtains
here only slight values.

The normalized functions ®(W) are plotted in Fig. 1 for mercury vapours.
The ratio h/R (k is the Debye length) was chosen as a parameter for @. For
&R >3 X 1072 the Debye length is already comparable with the tube radius.
In such a case the theory for the radial potential caleulation according to [1]
and [2] cannot be employed.
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