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MEASUREMENT OF THERMOPHYSICAL PARAMETERS
OF ANISOTROPIC MATERIALS

STEFAN LANYI, Bratislava

In papers [1-—3] very practical puls» methods of maasuring thermophysi-
cal parameters of isotropic samples with the holp of a point or a line heat
source were shown. However, for moasurements on anisotropic materials
a plane source of heat had to be usad.

In this paper relations will be shown, which make th> use of a point or
& line source for measurcments on anisotropic materials possible.

INTRODUCTION

Measurements of thermal properties of materials are rather difficult and
slow. Some methods have been devised trying to avoid these difficulties.

The pulse methods [1—3, 5] are timesaving and their accuracy is for many
applications sufficient. They can be applied to measurements on thin films
and on samples of undefined shape [2, 3] and they render the calculation of
specific heat, thermal conductivity and thermal diffusivity from the results
<f a single measurement possible.

The thermal properties of many natural as well as synthetic materials
appear to be anisotropic. In such cases the results from the papers [1—3] cannot
be used. Therefore, measurements on anisotropic samples are usually performad
with a plane source of heat, and are difficult to perform, as it is not easy to
obtain a negligible heat capacity of the source and a good contact with the sample.

Formulae enabling the caleulation of thermophysical paramesters of anisc-
tropic materials from the results of pulse measurements with the help of
@ point or a line source of heat will be found in this paper.

HEAT CONDUCTION IN ANISOTROPIC MEDIUM
The specific heat ¢, the thermal conductivity 4, defined by thz Fourier
law and the thermal diffusivity &, defined by the relation

A
k== -, (1)
cy
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(where y is the density), will be called thermophysical parameters (properties).
All three parameters are in an isotropic case scalar quantities. If the thermal
parameters are anisotropic, then the directions of the vectors of the heat
current and of the temperature gradient are generally not the same. Their
relation can be written as

i=—T7.grad T (2)

A is the therwal oob&:ai&q tensor. According to [4] it is symmetrical. Its
graphic image is an ellipsoidal surface. In a coordinate system with the axes
identical with the axes of the ellipsoid the non-diagonal components of the
tensor are zero, i. e. three components, the so called main thermal conductivi-
ties, give its complete description. Similarly, it is sufficient to know the three
main thermal diffusivities.

HEAT CONDUCTION FROM A PULSE HEAT SOURCE

Let us suppose a homogenous infinite heat conducting sample, e. g. a solid
or a viscous liquid. Let the function F in the equation

ol 2 1
V2T 4 — F(x,y,2,t) (3)
a ey cy ;

express the pulse-like development of a known amount of heat @ in a very
small volume round the point O(0, 0, 0). The temperature distribution in the
point Pz, y, z) will be .

AT = 4

= w.aﬁl%m exp (r2/4kt); (4)

2 =% + y? 4 22
as it results from the solution of aro,ﬁwv equation.
From the maximum of the function (3) in the point P and the corresponding
time .
72

b = —— 5
- (5)

the thermal parameters can be calculated.

72 (4] Q
=—. 21=123x102———. ¢=00738 ——. (6)
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194

A

We .mmﬂ similar results if the heat source is a line, identical with the z axis
and @ is the heat quantity supplied by a unit length of source:

72 Q
h=—! A =292 x 10-2 . (7)
4 AT’
Q
= 0117 ——— 2 . 2 9
r2yAT mES Ty

. The increase in temperature as well as the time of its maximum is the same
in every point on the |r| = const. surface, i. e. this surface is every moment
an isotherm. In an anisotropic material the isotherm gets deformed and as it
can be demonstrated it is the surface of an ellipsoid.

The equation of heat conduction in anisotropic materials for a coordinate
system mentioned above is [4]

oT T T oer

mu 1 mﬁw + 2 %.N\N IT an mNm I_Ihv\ .WX.&_“ w\u 2, 3 Amv

After a transformation of coordinates in the form

; k\ve L \12 k\12
=zl— . n=qyf|— 5 =z —
i 1=y n (=2 i 9)
with an arbitrary k we have
oT o " T 4 o 1
mw = QMN mﬁw mm.m l*lMQ.\I.N,_HAmn 1, Wv Nv g AHOV

Hrm only formal difference between the equations (10) and (3) is in the func-
tion Fy. If it could be formed with the same symmetry with respect to the
&, m coordinates, as the function # with respect to the z, y, 2z coordinates, the
solution of the equation (19) would have the same form as that of the o@ﬁ@fOb ’
(3). It bappens in the case of negligible dimensions cf the heat source, i. e.

if it can be regarded as a point or a line. Thus the solution of the equation (10)
for an infinite space is

@ 2 1 2 2
AT = exp | — 3 L T . :~
8732 A(t)3r2 4kt )

Because of an arbitrary k, 1 does not mean any real thermal conductivity
and ¢, 5, £ are unknown coordinates.
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CALCULATION OF THERMAL PARAMETERS

The transformations (9) can be expresszd in a more useful form. We shall
the points

Pz, 0,0) = Pe(£, 0, 0)

Py(0, 3, 0) = Py(D, 5, 0)

P,(0,0,2) = P:(0,0,¢)

choose for this purpo

with the condition x = y == z. As the thermal paramsters are anisotropic,
the temperature increase in the points Py, Py, P, i. e. ATy, ATs, ATj3, as
well as the tims of thair maximum ty1, twa, tus are different. The ratio of the
warmings-up is

AT, ki \32
={—]| , ij=123. (12)
AT; k;
The scalar quantity k from the relations (9) can be expressed as a tenzor
R UN)
00k

This tensor can be regarded as the thermal diffusivity tensor, transformed
into the 0, &, 7, { coordinate system. If the condition

I3 = kikaks . (14)

is fulfilled, i. e. (14) is an invariant of the % tansor [7], the choics of k presarves
the used physical units, including the unit of volum:.
Lct us defins a new quantity

K
AT = (J]ATyu» (15)
i1
with n = 3 in the case Om. the point and n = 2 for the line h=at source. It is
easily seen that for this AT the relation
\VN._Q. Nas 32

AT \ %

, 1=1,2,3 (16)
is correct.

The (12) and (16) relations maks it possible t» express the transformtions
by t1e maximal warmings-up AT, msasured in the pionts Pz, Py, P,.

Now the specific heat ¢ my be calculated by msans of th2 results of a m2a-
surement in the point Px(x, 0, 0) = P&, 0, 0), the (9), (16) and th> evidently
valid relation
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AT, { (17)
@
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ya$ AT,
2}
Q
¢ = 00738 ————. (18)
y AT )

Obviously the 2 can be replaced by y or z coordinates.
It is not necessary to measure in points with the same distance from the
source. In the expression

¢ = 00738 e (19)
S ya'y 2 (AT AT AT )13

the z’, y', 2’ coordinates are arbitrary.
The three warming-up measurements may be realized successively. If the
heat pulses are not of the same magnitude, the following relation is to be used:

0-0738 1 Q1 \1B3( Qs \¥3 [ @y \13
¢= o ; ; =1 = (20)
¥ x'y'z" \ AT, AT, NPy

The results for the line heat source:
2
yx2AT

e
y2'y (AT AT 2

c=0117 , (21)

= 0117

0117 1 & \V2 [ @y \112
¢ = - - = (23)
y 2y \ AT, AT,

The time of the maximum of the function (11) in the point P(z, 0, 0) =
Ps(£, 0, 0) is

It

wnm 22

6k 6k

wSH =
as it results from the relations (5) and (9). The formula for the calculation of
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thermal diffusivity is

22

ky = —.
ongw

(24)

Similarly for ko, ks.

‘ The relation (6) for the calculation of thermal diffusivity is valid for anisotro-
pic samples. The same statement could be proved with respect to the relation (7)
for k. It follows from these facts that it is possible to measure and calculate
thermal diffusivity correctly for every direction.

Formulae for the caleulation of thermal conductivity components result

from the relation (1) after substituting the (18) and (24) expressions, e. g. for
the direction O ' ‘

Ji=123 x :Ifei, (25)
&NEHDS

similarly for the other directions. Obviously the AT is defined by the expres-

sion (13).
Results for the line source:

Q
Ay = 292 X 10-2 —, (26)
?ED@
Ao = 292 x Hosm'|©}|..
b AT
]
Fig. 1. Thin wire on the surface of the Fig. 2. Thin wire botween two ,,semiin-

sample as a heat source. finite* samples as a heat source.

198

FINITE DIMENSIONS OF SAMPLES

The measurement is particularly influenced by the nearest vicinity of the
place where the heat source and the indicator are located. The valididy of the
derived relations is not influenced by the finite dimensions of the sample, if
they are not smaller than a certain minimum. According to Krempasky
[1, 2] for isotropic materials the distance from the point source — or from the
point on the line source opposite the indicator — to the surface must be R = 3.
The error is then less than 19,. The same condition is valid for anisotropic
samples, if 7 is replaced by g. But as g is usually unknown it is necessary to
choose an appropriately greater diameter. For example R = 4r is sufficient
up to the ratio of Amax/Amin = 3-2.

As the heat spreads from the source radially (more exactly see [4]), i. e. it
does not pass through any of the x0y, y0z, z0x planes, the heat conduction
in , semiinfinite‘‘ samples bounded with one of those planes can be calculated
similarly as in infinite samples. Therefore, measurements on an isolated surface
of the material are possible. The amount of heat ) is to be doubled in calcula-
tions.

The heat spreads from a line source in planes, perpendicular to the line, i. e!
similarly as in an isolated thin foil from a point source. This fact permits the
measurement of thermal properties of thin films in directions lying in the plane
of the film, with the help of a point source.

SouRCE /

ss

THERITOCOUPLE

Fig. 3. The fundamental arrangeniont of
the measurement.

199



MEASUREMENTS ON SINGLE CRYSTALS

The structure of the greatest part of practically interesting materials is
defined with regard to the main axes of the thermal conductivity tensor. In
crystalline materials, except those belonging to the monoclinic and triclinic
systems, the necessary directions for measurement result from the symmetry
elements. .

In monoclinic crystals one direction should be identical with the twofold
axis or with the normal to the plane of symmetry. If the remaining coordinate.
axes are the axes of the crystal, perpendicular to 0z = b, the thermal diffusivity
tensor is

koo kge O
F=|ka ke 0 ). (27
0 0 ks

Its components as well as those for the triclinic crystal can be found by con-
structing the tensor ellipsoid. A system of equations in the form

N&SQM + \r,gom + N«.aonm + (kap + kpa) anby, + (kge -+ kea) Qnln + (kye -+ kep) bucn = 1.
(28)

where ki = kj:, should be used. From measurements along the coordinate

| Soueer

THERYTOCOUPLES

Fig. 4. Measurement in two directions.
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1 axes and in further three directions, e. g. lying in the a0b, boec, cOa planes
the k;; components can be calculated, as | [kiM/2 is the length of the radiusvector
of a point on the ellipsoid and thus it gives the a,, b, , ¢, coordinates.

For the caleulation of k in every direction, or for the transformation to
another coordinate system the formula

| ke = 373 caciky (29)
! ic1ja
j is valid [4, 6, 7],

1
ARRANGEMENT OF MEASUREMENTS

The simplest realization of the line heat source is a thin wire, pressed to the
surface of the sample or between two ,,semiinfinite‘ samples through which
an electric current passes. (Fig. 1, 2). The arrangement from Fig. 2, where the
heat trensfer from the surface of the sample does not need to be taken into
account, can be recommended.

A satisfactory realization of the point source is more difficult. On metals
and semiconductors a point pressed to the surface can be used. The heat pulse
is achieved by Peltier’s effect and Joule’s heat. Similarly a knifeedge can be
employed as a line source.

An excellent heat contact between the parts of the sample pressing the
indicator as well as between the indicator and sample is inevitable.

The influence of the heat capacity of the source and of its heat conduction
is discussed in detail in Krempasky’s paper [2].

4

\
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G
Fig. 5. Measurement on the surface of the sample.
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The coefficients can be measured one by one on samples, cut perpendicularly
to the chosen direction (Fig. 3). If for the measured material the relation
A1 = A2 % A3 is valid, a line source is suitable, perpendicular to the z-axis,
with indicators in the z-axis and perpendicularly to it (Fig. 4). Fig. 5 shows
the surface measurement of more components on an appropriately cut sample.

Other arrangements are dealt with in detail in papers [2, 3].

CONCLUSIONS

A solutior of the differential ecuation of the heat conduction in anisotropic
materials with regard to pulse measurements of thermophysical parameters
has been shown in the paper. Principles of measurement and formulae for
calculation of thermal conductivity and thermal diffusivity components as
well as of specific heat have been included. The use of line or point heat sources
makes the measurements in comparison to the flat source considerably easier.

. The choice of necessary directions for measurement and the way of obtaining
the entire description of thermal diffusivity (and thermal conductivity) of
single crystals have been shown.
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