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THE N, RESONANCE AND THE THREE—POLE N/D
APPROXIMATION IN THE STATIC MODEL

DALIBOR KRUPA, Bratislava

Within the framework of the N/D method in the static model the forces in
the N channel are usually approximated by two poles corresponding to the A
and N* exchanges. Tn the present paper a third pole is added and its parameters
determined from the requirement of obtaining the correct mass and width for
Ny, in the direct channel. The third pole represents in a phenomenological
way the forces different from the N and N* exchanges or the corrections to
their static approximation. The physical interpretation of parameters of the
third pole obtained in the caleulation is given. The sign of its residue indicates
that the third pole represents a correction of the static model and not a re-

sonance exchange contribution,

INTRODUCTION ~

The partial wave amplitudes of the xX scattering obey within the frame-
work of the static model the following relations:

P Imfyw)de’ P [ Imfio de’
Refilw) = — | 1A’ P [ Ifgw)der
T o' — w T w —qo

L R’

(1)

‘where L(R) denotes the integration over the left (right)-hand cut. The unitarity
<ondition gives on the upper edge of the right-hand cut

Infi(w) = g3(w)|fifw)2; 2)

‘where g{w) is the kinematic factor. The left-hand cut is connected with the
forees responsible for the scattering, i. e., with the particle systems that cap
be exchanged. The unitarity condition (2) is a non-linear equation, and in
solving eqs. (1) and (2) it is customary to use the N/D method developed by
Chew and Mandelstam, which reduces eqs. (1) and (2) to two coupled
€quations. We write the N/D decomposition as .

Jiw) = Ni(w)Dy(w)-1. (3)

129




N contains only the left-hand cut singularities and D only the righthand cut
ones. In this way we obtain

Nifw) = W\ Imfi(e’) do'; (4)
L

’
w —w

and :
L Q 14 u ’ .2 4
bxevﬂulm% »'qg3w’) ASVM (5)
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Here D(w) is normalized conveniently to unity at w == 0. Such a normalization
i, of course, permitted since both N and D may be multiplied by a common
constant without changing the amplitude fi(w).

The dispersion integral in eq. (5) causes the well-known convergence troubles,
which are frequently avoidad by introducing a cut-off 1). If we use a cut-off then
the integral on the righthand side of eq. (5) is changed to the form

£ ’ w ’ r
Diw) — ~llw do'g3(w")N(w')
T o'(w" — w)
1

(5)

The final results are, however, quite sensitive to the value of A which, besides,
is always fixed up in a more or less arbitrary way.

A different method to avoid the convergence troubles has been proposed
by Petrds [3]. His approach is based on potential theory, where N and ‘D are
easily defined in the terms of Jost functions g(w, 7). Petras thus obtained
a perfectly well defined and convergent system of equations of the type (4)
and (5). In the limit r-s 0 these equations reduce to ordinary ones,
requiring however in an explicit way the N(w) function to behave like -3
for w-> oo, which assures the convergence. If, as is frequently the case, we
approximate the N function by a sum of pole terms:

Nw)=»-—2_
w + Wy

i
the requirement N(w) - w-3 for @ oo gives the following conditions on the
pole parameters

MS = 0; Saw; = 0. (7)
i i

1) The motivation of the cut-off introduction may be found in the original paper by
Chew and Low in Phys. Rev. 101 (1956), 1570, based on the ides, of an extended
nucleon as a source of the meson field.
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Equations (7) are easily derived from €q. (6) if one makes use of the identity

(]

1 1 Wy 7

IHHI’.I«‘IIT i

o + wi w w? 0w + 8&.

The purpose of the present paper is to use the three pole approximation to
the left-hand cut, where two poles are given by the N and N* exchanges.
The third pole is chosen to fulfil the relations (7). The possibility of obtaining
the N* resonance with the experimental values of mass and width is then

The paper is organised as follows: the first part introduces the P wave
dispersion relations. In the second part some details of the three-pole calcula-
tions are given. The third part presents results which are summarized and
commented on in the last part.

P WAVE DISPERSION RELATIONS

There are four P partial wave amplitudes of ¥V scattering which correspond to
four different quantum numbers I and J. In the bresent paper we deal with
the N3, resonance which is in the Py (1 =1, 1 = 3/2, J = 3/2) partial wave
at the kinetic energy 159 MeV in the centre-of-mass system (195 MeV in the
laboratory system).

The dispersion relations for P partial wave amplitudes are given by the
following equation [13:

R Imfi(w) AuImfi(w’)
HW@.\.&AEV = N t Mr Nex Il 8! -+ o + =
1

do’; (8)

1% sin

¢

successively equal to (1, 1); (1, 3); (3, 1); (3, 3); w is the total meson energy, A;
and the crossing matrix gy are:

€

where fi(w) = ; the index 7 represents an amplitude where 27, 2J is

—4 1 —4 —4 14
_ 1), JUNLY Bl
T3 ) o l-2 8 1 4
2 4 2 2 3

J% == 0.08 is the coupling constant.
The two particles unitarity condition for these amplitudes is:

Infi(w) = ¢3()|fi(w)2. (10)
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In considering the system ofequations (8), (10), we neglect the inelastic processes.
Inthe opposite case €q. (10) is not valid and there would remain only four equa-
tions (8) for eight unknown functions (real and imaginary parts of fi(w)). Dis-
persion relations (8) are derived from dispersion relations for forward scattering

'
by the static approach M’va 0). The kinematic factor in this case is

9w) = (02 — 1)}; (11)
For the Py; partial wave amplitude we have
4 f2 P Im Im(4 2 2fs1 +
Refs — !\’ o E 1fa3 Im(4fy; + \.a + 2f31 + fa3) do' (19)
3 w Ll o — @ Yo" + w)

1

Since there is a resonance in the P33 partial wave, we shall suppose that the
contribution from this partial wave dominates over the contributions from
other partial waves and determines the value of the dispersion integral [2].
Consequently we shall neglect other partial waves in the left-hand cut?) of
eq. (12).

If we suppose that the width of the resonance is small enough (I"- 0) we

omzmzcmanzgnrm mEmmmsmgwman&. Js3 (w) by the §-function and after per-
forming the integration we obtain -~ .. .

4 .\b 1r 1 1 + P HNB\“W@AE\V

3w 9 2 73(ws3) was 4 w b o — o

do’;  (13)

-

where ws3 is the resonance energy.

THE THREE.POLE APPROACH

We can see from the last equation that the amplitude fs3 contains a pole at

4 4 '
® = 0 with the residue ¢, = W.\m = W vi1 and a pole at ¢ — w33 with the
rro 1 .
residue C; = r@nM (w3q — 1)73/2 — lwl vsa ; and the right-hand cut from 1 to
infinity.

Both poles are associated with exchanges of lowest mass particles with
quantum numbers of the channel

?) Note however that the nucleon-exchange contribution is included.
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1. e., the nucleon and the N<w_w resonance. The mass of hzﬂwu 18 M+ wsg.
In further calculations we shall make use of Petras’s results [3]. Petrs
expressed the scattering amplitude in the so-called N/D form

f(@) = N(w)D(w)1 | (14)
and from the assumption that N () is
a
N(w) = L (15)
w -+ wj :

i
where a; are some constants which have to be determined and —; the known
positions of the poles, D(w) is

,
le Q. fI ’- .
b?cv”@oo_l«t?;l Mt!] WINIA;\SN l:~E=A8+ ﬁ\sm — 1) —img —
T Lo+ w
i

— V=0 =i~ + Y ar = 1) — i, (16)
and the following conditions are valid:
2.0 = 0; (17)
1+ Dayw; = 0; (18)
Eqgs. (14) and (15) give
@ = CiD(—~awy) (19)
where C; are the known residues of the poles of the scattering amplitude at
@ = —wj. The term [(—w;)? — 1]/2 means that the function (w? — 1)1/2
should be analytically continued from the upper side of the right-hand cut up
to the point w = —aw;. Eqs. (17) (18) (19) are sufficient for the full determi-

nation of the constants a; and bo, by. Condition (18) has no deeper f.r%mmomﬁ
meaning, it leads only to a normalization of the N and D ?Boﬂozm which can
be chosen arbitrarily without affecting the scattering amplitude.

The three-pole approach consists in the addition of a third ww_o to the .Ho?-
hand cut. The position of this pole is not fixed beforehand and will approxima-
tely be determined later by the comparison of the calculated results m.& the
mm\mm_. If we choose instead of (18) the normalization D(1) = 1, we obtain the
following system of equations:

ar + as + az = 0; (20)
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a) = waAOv AMMV
az = CoD(—2.13): (23)
ag = QwNvAulSuv.” Aw%v

where a1, as, ag, bo, by, the position of the third pole (denoted by —w3) and
its residue C; are unknown parameters. To determine these seven constants we
need two more equations. We can actually formulate them, because we
know the position (w33) of the N3; resonance and its reduced half-width V33
from experimental data. v

Within the N/D method a resonance corresponds to zero of ReD(wres) and
the reduced half-width is given by [4]

>w?c§.&
ReD'(wyes)

y=—

hence the following must hold:

ReD(2.13) = 0; (25)
N(2.13)

ReD'(2.13)°

yas = — (26)

The correct values for y3s and yq; are according to [5]:
711 =0.246 4 0.006;  yg — 0.12 4 0.01;
hence the corresponding residues are
Cy = 0.109; Cs = 0.013,

The function N () has in the thrée-pole approach the following form:

a £
Nw)=— + = +—= . (27)
) @ w -+ 213 w -+ wg
and the function D{w) is
w—1{a —
D(w) = by + wby + = Vor =Tine + Jor =1) — iy — &
= 2
as = - .
+ et [ o = 1an@ew + Vor =T) —im) & 1.1347] +
as .
- Yy .:\8w — I{In{ew L+ ﬁ\Em — 1) —in) +
+ Vo = 1(in(—w; — Vet =1) — imy ; (28
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thus
- L E
Hﬂ@b?cv = by + wb, -+ ﬂ 0 - ”v -+
+ 0t Q+ 0 29
o+ 213 T .E‘Teu + ) (29)
where
Q=)o —1ln( + Vo =7y, (30)

and the term Q3 means the value of Q for w = ws.

CALCULATIONS AND RESULTS

After the substitution of N(w) and D(w) into (22—25) we have to solve the
following system of equations:

a; + a2 + a3 = 0; (31)
bo 4+ by = 1; (32)
: a3 1 [
a1 = C {by — 0.4043a, ——|— 4 Qs : (33)
w3 T 2 .
.. 1.1258 _
as = Cq {by — 2.13h, 4+ 1.43a; + as(— 1.1347 + Q3) (34)
) w3z — 2.13
Table 1
w3 ‘ a; asz as by by Va3 Cs v,
6.0 ‘ 0.18966 0.03960 | —0.22926 1.65407 | —0.65407 0.1077 — 0.02522
9.0 0.18644 0.03779 | —0.22423 1.61914 |—0.61914 0.1100 —0.01561
12.0 0.18407 0.03642 | — 0.22049 1.59264 | — 0.59264 0.1132 —0.00922
15.0 0.18230 0.03537 | —0,21767 1.57235 | —0.57235 0.1146 —0.00626
M 18.0 M 0.18091 0.03452 | -—0.21543 1.55612 | —0.55612 0.1151 — 0.00448
21.0 A 0.17977 0.03381 | —0.21358 1.54262 |-— 0.54262 0.1153 —0.00334
30.0 0.17725 0.03220 | —0.20945 1.51226 |—0.51226 0.1131 —0.00168
w e Y P I R
i

50.0 0.17395 G.02999 | —0.20394 | 1.47130 |— 0.47130 | 0.1125 |— 0.00057
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[£2:]

Sw — 1 |a T
a3 = C3{bg — coghy + -2 - | D Qs +—] +
x| 2) " 213 4

(—Q3 + 1.1347)] } -

(35)
1.1258

2.13 - ws

bo + 2.13b; — 0.2305a; 4 0.59984, + as(1.1347 4 04) — 0; (36)
and eq. (26).

The solution of this system has been obtained humerically. The results of the:
numerical calculations are in Table 1, where @1, @3, ag, by, by, O, V33 are
calculated for the H.o:oé.:m values of wg; 6,9, 12, 15, 18, 21, 30, 50. We can see
that for the values of @3 the values of yg5 are within the region 0.12 + 0.01,
which is the experimental value of v33. It is therefore not possible to fix in
a unique way the position of the third pole, because our system of equations
may be satisfied by any w3 from 9 up to the 50. At the same time residues Oy
of the third pole are changed from — 0.0146 to 0.0006, when the third pole
is shifted from the value w3 = 9 to the value w3 = 50.

Now we shall use the calculated funections N{w) and D(w) to determine
the dependence of the phase d33 on the kinetic energy of m mesons in the labo-
ratory system. The third pole is successively placed at w3 =9, 21, 50, and
results are compared with the experimental phase shift [6]. The functions
N(w) and D(w) for these values are known because we know the constants
a1, az, ag, bg, by . In the N/D method the phase is given by

1 ReD(w)
*w)  N(w)

cot o(w) =

(37)

Calculated values are given in Table 2, experimental ones in Table 3, where
the index I denotes the laboratory system. We can gee (Fig. 1) that phases
calculated in this way are slightly above the experimental data, hut they are

Table 2

83.5 16°107
—_— ——
134.0 47°40"
- //‘f
171.5 75°30"
//f

Table 3

ok kin [MeV] ‘ 215 | 248 \ 3.0 | 37.0 ‘ 4.5 1 380 | 830 | 980 |1130 |
[

m _
T o N IS B
| Sm_, .mi 2.53 | 360 | 414
1
N

33 [grad]

wk kin [MeV] Two.o 150.0 T@.o Tﬂ.o 165.0 | 170.0 Tﬁw.o T%.o Tﬁ.o
P e i : N —
\%w lerad] | 3193 | 47.36 m 4585 | 5430 | 6394 | 69.95 _ 7e44 | 8513 | 8045 !
7 f :
NP A W
muu
007 exp . \\
— ——w, .90 7
. i
o
F
s0t o
=
=
T
p— = = .
100 200 Fig. 1.

r

LAB.ENERGY  [Mev]
almost unchanged by a shift of the third pole. The value of 33 1s also insensitive
to the third pole position w3. j

SUMMARY OF RESULTS AND DISCUSSION

Dispersion relations for the  — 1 partial wave lead generally to the principal
problems of convergence solved often by introducing a cut-off, In order to
avoid these complications we used the method developed by Petr4s [3], which
adds further poles to the left-hand cut and the proper adjusting of residua
assures the convergence of the integrals in question. The method was applied
In the present paper to the calculation of the N 55 Tesonance in the static model.
The use of the static model naturally imposes some limits on the energy regions
analysed, for instance in the case of the =V scattering the static model may be
reasonable up to, say, 300 MeV for the kinetic energy of the incident meson.

The addition of the third pole to the left-hand cut in a partial wave is in
principle much easier to accept than the introduction of the cut-off. The third
pole may represent the contribution from the neglected resonance exchange,
or the correction to approximations used in the static model. In particular, in
calculating the resonance exchange contribution one frequently uses a zero
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width approximation. This might turn to be a crude approximation calling for
& correction at least by the introduction of a further pole.

In the present baper we have introduced the third pole to the [ — J — %
N static model, and apart from the convergence we required the correct
values of N¥, mass and width. The result is not quite trivial since, as can be
expected a priori (and is also shown in Table L), it is not clear beforehand if
the correct mass and width of the N3; can be obtained within a three-pole for-
mula of the type we use,

The third pole is evidently not connected with any resonance exchange. In

fact all the elements of the crossing-matrix are positive in the [ — J — 3

and the giving of the N* resonance with the correct value of the mass and
width in the direct channel.
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