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THE SU(8) GROUP AND CLASSIFICATION OF ELEMENTARY
PARTICLES

LUBOMIR TOTH, Kogico

This paper presents a possibility to extend the SU (4) symmetry of elementary particles
to the SU (8) symmetry in analogy with the SU (3) - 8U (6) symmetries within the
framework of the static quark model. There are obtained wave functions, mass formulae
and magnetic moments.

INTRODUCTION

Recently a lot of experimental data on accelerators have been obtained in
different countries confirming the existence of new particles and resonant states
(resonances); their number now is over 300. To classify them physicists use
also parametrical continuous groups — Lie groups. Some successes were
obtained in this way in 1961 by Ne’eman and Gell-Mann who suggested,
independently, a certain method — the eightfold way (because we work therein
with eight quantum numbers). The mathematical foundations were found in
the Lie groups, particularly in the SU (3) group.

Although the eightfold way of Gell-mann— Ne’eman has improved the classi-
fication of elementary particles, it is not understandable from the point of view
of the unitary model why in nature there are no particles (so-called quarks)
corresponding to the minimal dimensional representation — the three-com-
ponent tensor, which was the fundamental one in the theory of Sakato
(sakaton). In 1964 Gell-Mann and (independently) Z weig used a hypothesis
according to which all adrons can be constructed within the fremework of
SU (3) by means of the mentioned three fundamental particles-quarks or
aces with fractional values of quantum numbers.

To avoid difficulties of the SU (3) symmetry (the existence of 9 vector
mesons, the relation between masses of scalar and vector mesons etc.) Giirsey,
Radicatti and Pais used in 1964 the SU (6) symmetry resulting from an
extension of the direct product SU (2) ® S (3). Here SU (2) group describes
spin transformations. The principal drawback of the SU (3) and SU (6) theories

is that particles with fractional electric charges-quarks have not been observed
so far.
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To avoid the above mentioned difficulties physicists began to study groups
of higher ranks. Several authors [6—7] tried to construct particles by means of
four quarks within the framework of the higher SU (4) symmetry in which
quarks have integral charges. The necessity of integral charges in strong
Interactions caused the introducing of a new conserving quantum number,
which was called charm or supercharge and was included in the SU (4) sym-
metry. The SU (8) group results by an extension of the direct {or Kronecker)
product SU (2) ® SU (4), where SU(2) is a spin group.

THE SU (4) GROUP

The SU (4) group is a 15 parameter group of unitary unimodular 4 x 4
matrices, which can be written in the following form

U = exp (iH),

where H = H*, i. e., the Hermitian conjugate and SpH = 0. The matrix
H can be rewritten in the form [15]

15

H= > wi,
k=1

where «, are group parameters and A are generators (k= 1,2, . 15).
Among them we can find three commutating (together) generators, As, Ag,
415, so that the rank of the SU (4) group equals three. Generators fulfil the
following communication relations
. i 4] = 2ifudy,  Sp(a;, A) = 26,

where f;; are structural coefficients. 4

We shall use one of the models (given in [7]) of the SU (4) group, character-
izing the properties of internal symmetries of strong interactions:

~ T3 Y z Q N zZ
r | ! } ! 1 ~1 1
n —3 3 1 0 —1 1
) 0 —2 1 0 ~1 1
q 0 0 —3 0 = 0
I. e. the quartet consists of antibaryons (N = —1). This choice within the

(extended) SU (8) symmetry is required to obtain multiplets in agreement with
the experiments. Here we have introduced a new conserving quantum number
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Z" which is called supercharge and it is related to the conserving quantity 7
(obtain by the author) by the following formula

Z =2 - 3N,
thus we have Q = Ts+ Y2+ Z/3 — N4=7, 4 Y/2 + Zf3.

We shall now deal with the occupation of multiplets. Tn this higher symmetry
new particles appear comparing to the SU(3) symmetry, and we have 15
vector mesons, 15 pseudoscalar mesons, 20 baryons }+and 20 baryons §+ [7].

>

Pseudoscalar and vector mesons are constructed combining quark-antiquark
and they belong to the representation 15 because

4®4=15@ 1.

A 15-plet of vector mesons also contains a triplet (4* — isosinglet and £* —
isodoublet) with Z = 1 and its antitriplet (X*, £*) with Z = —1 in addition to
the ordinary SU (3) octet (e, K, w) and the singlet &. 15-plet of pseudoscalar
mesons z, K, 5, X, 1, £ has a similar structure.
Baryons 1+ belong to the Tepresentation 20" which results as a combination
of three quarks, i. e..
L1RIRL=36020 @2 x 4.

It contains a SU(3) octet (N, 4, 2, E) with Z = 0, a sextet (o, -isotriplet,

o, -isodoublet and o, -isosinglet) with Z — 1, triplet —3 (7, -isodoublet
and 7, -isosinglet) with Z — — 1 and a triplet —3 (f, isodoublet and ty -isosing-
let) with Z = —9,

Baryon resonances 3+ belong to the representation 20 which is obtained
as a combination of five quarks (two quarks and three antiquarks), for instance

15® 20" = Eo\\@mwlcm@%@mo@wq@wo\@w.
This representation contains the SU (3) -decuplet (Q-, 5 *Y* N*), a sextet

(£’ -isosinglet, 5'* -isodoublet and Y'* isotriplet) with Z — —1, a triplet
(£2"~ -isosinglet and 5"* -isodoublet) with Z = —2, and a singlet (2"~ -isosing-
let) with Z = —3,

THE SU (8) GROUP

The extension of the algebra of the SU (4) group to the algebra of the SU (8)
group (through the direct product SU (4) ® SU (2), where SU (2) is a spin
group) is obtained by unifying the algebras, where [10]

.mat ( =1,2,...,15)

and J, (k=1,23)

~1
>

are basical elements of the Lie algebras of SU (4) and SU (2) groups, respective-
ly. We shall consider the direct product

Jy®F,. (1

‘Operators constructed in this way will form the Lie algebra if their com-
mutators are expressed by the same quantities. However, we get:

e X By Iy X FY =3[, /)] X {F,, B} + } {(J,., I} X [F,, F,),
i. e., anticommutators appeare. Therefore we must extend the algebras from
‘which we started. We add to the multiplied algebras the following elements:
L 0o o_\
0
0
I

=27t J&,

=

1
0 0
0

while {0, o1} = 28,04, {A,, L} = 2! 6, 4 + d,,4,, where 6, is the Kro-
necker symbol and d,,, the totally symmetric tensor. Thus we must take the
U (4) and U (2) groups instead of the SU (4) and SU (2) groups and 255. get
the product of type (1). We may choose the following elements as the basis of
that direct product:

AP =6, ® A, (k=1,23), (a=12,..,15),

‘where o and 1, are generators of the SU (2) and SU (4) groups, respectively.
Normalisation conditions of matrices will be written in the form

MHVA\#S ’ \MMSV = %m&& &.5. ¥

L

The elements A% generate the algebra of the U(8) group and represent its gene-
rators. To come back to the special group it is enough to exclude the unit
element A{” and we get the Lie algebra of the SU (8) group. As the SU( .wV group
is the group of rank 7, so there are seven diagonal generators of \PS among
those commuting together. The two last generators (connected with Z) have
this physical significance [9]:
AR = 0y ® Ays = $Z, where Z = ¢, ® 344,
the operator of supercharge (charm).
A = 03 ® Ay = 28%n;, where 7, — Z8, (S; = lo, ® I,

the operator of the third component of supermagnetic SoEm:.n. .
To obtain generators of the SU (8) group in tensorial form it is necessary to
perform a similar procedure as in the case of generators, starting from the pro-
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Qwoa of type (1). As the basis of representations of U (4) ® U (2) we shall take
directly the elements ./, and F,. We get now

3
J_
,Nchc.TM,b.XS.H,, 2)
k=1 Wl,\w
1+¢@ 7. K_ M_|
15
T - Y + 27 7,
H«OXNO#IM@EXN}” + 4 QIT lTw L_ N_ va
peest K+ Ly 1—Y+4z P
M. Ny P D/

From the matrices (2) and (3) we obtain the product of the type (1). By sub-
tracting the trace of the 8 x 8 matrix (which was obtained as the product of
.@ and (3)) from it we get the spin-tensor of the group SU (8). This tensor is
given in Table 1. For its elements we have

(dy) =0, (4 = 4;,
LG, 4] = 024y — o642, (ALY = 8,6,; — 16,6

ui Ji
where y, v, 4,5 =1, 2, .|
The .md (8) group representations will be characterized by the tensor basis of
Jre . de 1 1
type ¥} -1, which transforms according to the tensorial character by means

of the following formula:

PED = U UpUDF (Ui PRk Gj=1,2,..,8)

t f...0p

In the group SU (8) there are three invariant tensors [8] 8},

TP A

i, o and
They can be considered as basic vectors of the o:m-m_mbm.bm_mo:m&
subspace of the SU (8) group (its one-dimensional representations).

Further some irreducible tensors (which are obtained ih this model) are
written and the corresponding Young diagrams are drawn:

R
63 ' 216

€

LI

Y3l [2111111] PEB [211111)

T

T 1344 =~ 1800
Pon 4 wazc) |-

1 [22111] - [31111].

The dimensionalities of irreducible representations are determined by the
formula,
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Mlyys ooyl = (120 T Y + TNy + 6) oo (v, + 1) X
X —vr +6)ye— v +5) ... (yg —v: + 1) X.
X =2+ 2 — s D) X (yr— 2+ 1)

In the SU (8) symmetry particles are classified according to the subgroups
SU(4) ® SU (2). The decomposition of some irreducible representations in
these subgroups is given in Table 2.

Table 2

Some irreducible representations of the SU (8) group and their SU (4) ® SU (2) content
(m, n).

Dimensions (m, n) content
63 (15,3), (15,1), (1,3). b

216 (36,2), (20",4), (20,2), (4,4), (4,2).

1344 (1407,2), (60,4), (60,2), (36,4), (36,2), (20",6), (20",4),
(20°,4), (20,2), (20",2), (20,4), (4,6), (4,4), (4,2).

1800 (140”,4), (1467,2), (50,2), (36,4), (35,2), (20,6), (20,4),
(20,2), (207,6), (20",4), (20',4), (20",2), (20,2), (4,4), (4,2).

1032 (160,6), (160,4), (160,2), (1407,4), (140",2), (84',4), (3T",4),
(60,4), (36,6), (36,2), (207,2), (4.6), (4,2).

We shall now consider the construction of particles. Mesons are constructed
by the combination of quark-antiquark and they are contained in the irredu-
cible representation 63 of the SU (8) group, because

8®8=630 1,
while 15-plets of vector and pseudoscalar mesons are in the representations
(15,3) and (15,1) of the subgroups SU (4) ® SU(2) (see the decomposition in

Table 2).
The representation 63 also contains the vector singlet X;°, which can be

written as (1,3). We can assign to the second irreducible representation and its

SU (4) ® SU (2) content (1,1) a pseudoscalar meson X9.
Baryous of the representation 20’are in the representation 216 of the SU (8)

group and they result as a combination of one quark-two antiquarks i. e.
8RB8RE=280@ 216@ 2 X 8

and the representation (20',2) of the subgroup SU (4) ® SU (2) corresponds
to them.
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Table 1
The spin-tensor of the SU (8) group.
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The following notations are used:
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Baryons §+ are in the representation (20,4) of the subgroup SU (4) ® SU (2),
which appears at the decomposition of the representation 1344 of the group
SU (8). The representation 1344 arises from the combination

8P®8®8%8RE=4032 @ 3080 @ 2 x
X 5544 @ 2 X 4200 © 1344 ® 1800 @ 6 x 280 @ 6 X 216 @ 6 x 8.
As to the other registered resonances we can choose a subgroup of some ir-
reducible representation for any resonance (obviously the same holds for the
SU (6) group). Few resonances observed so far are in individual subgroups and

the fundamental characteristics of a number of them have not been studied
sufficiently, so that it is difficult to classify them now.

PHYSICAL CONSEQUENCES OF THE SU (8) SYMMETRY

At first we shall construct wave functions of particles. For the representation
(20",2) of baryons 4+ the spin part of the wave function must be the eigenfun-
ction of the operator of the whole spin $* and S, with the eigenvalue 3h* and
3h, respecively. This sAin part of the wave function may be taken in the form

6N + N1 — 2(11)

ave ave abe
and it is symmetrical in bc. The internal (supercharge) part of the baryons wave
functions is the antisymmetric one in the interchange of quarks in this repre-
sentation. Therefore the notation we shall use has to be understood as follows

a[bc] = a(be — cb)(2)7*.
We give the wave functions of some particles [11]:
P> pDgl6 (M + N1 — 2{1)
N > nfdgl6™(H] + N1 — 2411)
A° > 67(plpg] + nlng] — 22AgD6HM] + 11 + 2{11)
or > [P (M + 11 — 2411)
vi > 27HAPA] — glpgl6 (M + 1l — 1),

Baryon resonances of the subgroup (20,4) are constructed by means of the
combination of two quarks-three antiquarks. The spin part of the wave
function must be the eigenfunction of the operators of the whole spin §% and
S, with the ecigenvalue “*h? and $h. There was found the combination ful-

filling
ZHMM — M,

abcede abecde
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the antisymetric one in de. The internal part of the wave function is the anti-
symmetric function in the interchange of antiquarks and the symmetrical
function in the interchange of quarks. Therefore the notations we shall use
must be understood as

label{de} = 6~*abe — bac + boa — cba + cab — ach)27¥(de + ed).
The internal parts of the wave functions of some baryon resonances will be: ~
E*= = [pngl{ni} E*0 - [pngl{pi}
Y+ - [pngl{pp} Y0 > 27X plq){pa} — [ndql{n})
N*++ > [ndg){pp} N* > 27X pAgl{pn} — [nig){nn})
Y+ — [prX}{pp} 5" — [pnl{pg}
Q- - [pngl{a3} Q" - [pndligq}.

Here we have used the graphical (model) way of the expression of wave func-
tions for a better physical understanding. Using the above graphs it is not
difficult to express the wave function in the explicit (analytic) form.

We shall deal with the mass formulae of particles now. To calculate elemen-
tary particle masses we shall use ordinary methods for deriving mass formulae
[12]. A 15-plet of pseudoscalar mesons of the representation (15,1) has within
the SU (4) the following mass formulae:

m; — m2 == $(my — m?) (4a)
m; — my = m? — m2 (4b)

2 2 2 2
Mgy, — My = F(my — m2) + S(mg — m3). (4c)

Here (4a) is the well known formula of Gell-mann-—Ocubo and the formulae (4b),
(4c) give us relations for new pseudoscalar mesons. The latest Rosenfeld Tables
[13] contain only two new convenient particles: The meson resonance 0(0-) —
— X% (or %') with the mass m — 9568,3 MeV and the square mass m? —
= 0,918 Gev? and the second resonance 0(0-) — E(1420) with m — 1424 MeV
and m”® = 2,03 GevZ. In our scheme there are also two convenient (in quantum
numbers) particles X% and 1° Out of the four possible ways of making the
theory agree with the experiment only two are suitable. First our XY; meson
can be assigned to the particle 7" Then from the mass formulae we obtain
masses of the other two meson resonances:

mi = 0,595 Gev® and m; = 0,822 Gev?.

The second particle £(1420), because of the great difference of its m2 compared
to the others, can be assigned to the pseudoscalar singlet (1,1) of the repre-
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sentation 1. Secondly the particle £(1420) can be ascribed to our X9, meson.
Then for the other particles we find

m; = 1,32 Gev? and mZ = 1,54 Gev?

where " must be assigned to 1°. Their difference is for m? ~ 65 %, that is
for m ~ 8 9, which is a rather good agreement.

A 15-plet of vector mesons of the representation (15,3) has within SU (4)
the following mass formulae:

2 2 ?
m, + 3m;, = 4dm..
My + Ml = ml + mi..
2 2 2 2
2(m2 4 m? - m,) = 3(mi. + m.).

The first formula (Gell-Mann’s relation) is not fulfilled (for the «° meson).
A hypothesis is suggested about o® — ¢° — X? mixing. In the result we get

2 2 2y 2 2y _
(m — m2)(m2 — m)(my, — mi) =
; 2
= —2(my + my + my, — 2m, — 2mG. + mZ)(m%, — mg)(mi. — m?2).

Unfortunately this formula (looking like Schwinger’s formula in SU (3) cannot
be tested because of the lack of experimental data. Combining the represen-
tations (15,1) and (15,3) into the representation 63 of the group SU (8), we
have the following general mass formula,

m=ml D VEVE LA D (AN 0B+ 4, S (54 —7) +

(4, B) (A, B) (4, B)

+ 8B — q)} -+ 1(3, (3 )
(4) (4)
‘where the first term is invariant under SU (4) and the other terms are invariant
under SU(2). In case of pseudoscalar mesons {(J = 0) Sp¥ = 0 and the last
term disappears.
Mass formulae for baryons of the representation (20,2) are;

Mg + my = (3m, + m;)

m, — m,

" oy T Mg — My

™

Wy, — My, = My — My (5)

0
Mmy + my, = WAwS: + m,)

m,, = img 4+ m,).

S
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We can find only one baryon #* in the Rosenfeld Tables, namely N'(1470) with
the mass m = 1470 Mev. There are three possibilities how to fit this particle
into our scheme, from which we prefer the following one: We take ny, =

== 1470 Mev and from the mass relations we find

m, = 1724 Mev  and m, = 1394 Mev.

The mass formula for baryon resonances of the subgroup (20,4) has this
form:

mo=mg + h{3 — ¥) — 3G — 2)} + hy(} — 2, (6)

1. e., we have equidistances not only for the hypercharge Y (as in the unitary
symmetry) but for the supercharge Z, too. Unfortunately, in the Rosenfeld
Tables there are no mew convenient particles (except the well-known SU (3)
decuplet), so that we can determine only

hy = 146 Mev and 2m, + h, = 2326 Mev.

Mass formulae (5) and (6) of the representations (20',2) and (20,4) can be
combined within the representation 1344 of the SU (8) group by the formula

m=my + kY +&T(T + 1) + kY2 + kZ + k27, (7

where the coefficients my, ms, k; are expressed through the constants 5
%, B1, fa, My, ki and h,, where:

o = My — My, oy = Mz — My,

\m.u = By Ssq_u \ww = 3~NW - SN.Q_.

The first term in (7) is invariant under SU (4) and the other terms are invariant
under SU (2).

As three out of four quarks have a zero charge, the calculation of the magne-
tic moments of mesons and baryons is not done by the ordinary procedure,
which was used in the SU (3) > SU (6) theories. We suggest a hypothesis
about anomalous quark magnetic moments:

I\

e sl

14§
d,
d;
%»

SO O -
(Lo
D b e

R
oo
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We have here introduced anomalous magnetic moments (in the Bohr magne-
tons) as small corrections to the Dirac magnetic moments. Then, for instance,
we get for some baryons the magnetic moments:

P16, —éd—6,, N6, —d; — 4,

A% s, Dt 148, — 8, —8,.

If we assume for the doublet quarks (p, ) the same origin of the anomality
(peripheral charges) then 8, = — §,. If we determine the other parameters ¢,
from experimental data (according to the Rosenfeld Tables)

pp=2T9Mp, py=—191My, p,=(—0.73 + 0.16)M,,

we can estimate the magnetic moment .. Its latest experimental value is
#re = (2.5 + 0.7)My. Taking into account the accuracy of the experiment
(for u ) we obtain within the framework of SU (4) the value u,, = 3.81 M,
(the difference is 19 9%,) and within that of SU (8) we get the value u,. =
= 3.62 My, (the difference is 13 9,).

CONCLUSION

In the present paper we have obtained within the framework of the theory
SU(4) - SU (8) some new results in comparison to the usually used SU (3) -
— 8U (6) symmetries. There are mainly the mass formulae for the new meson
and baryon resonances. To explain the deviation of masses » and @ from those
obtained from mass formulae a new hypothesis is assumed of the «° — ¢° —
—- NMS mixing of these vector mesons. However, the obtained formula for
masses cannot be used because of the lack of experimental data. In this paper
the hypothesis of anomalous quark magnetic moments is also given to explain
the magnetic moments up, uy, u,p and a fairly good accordance is obtained
for uy.(in spite of the breaking up of the SU (4) symmetry). The drawback of
this theory is that it is a static and approximate model like all the other pre-
ceding theories of this kind. The test of this theory depends largely on new
experimental data.
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