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ANOTHER DERIVATION OF THE KINETIC EQUATION
FOR STRONG ELECTRIC FIELDS

JAN FOLTIN, Bratislava

In the present paper the kinetic equation for the electron distribution
funetion in a strong electric field is derived in a different way than in the

author’s recent paper. Generalization to non-equilibrium phonons is suggested
and an application given.

INTRODUCTION

Recently the author, assuming the egquilibr

ium of phonons, has derived
the kinetic equation for the electron distribution function in cases where

a rectangular semiconductor sample with dominating electron-phonon scatter-
ing is exposed to a strong electric field, the intensity E, = E of which is
limited only by the effective mass approximation [1]. In the mentioned paper
the standard way of solving the density matrix equation [2] was modified
50 as to leave in the iteration process the series in powers of the electron-phonon
interaction only. In order to reach the steady state, the interaction of the
system with the environment, tending to preserve the steady :state once
obtained, was taken into account.

This paper aims to demonstrate that the same equation can be obtained

for the ring shaped sample suggested in Appendix A of paper [3]. This treat-
ment is chosen because of the fact that for the derivaion of

the mentioned
equation
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with % and & being electron and phonon wave vectors respectively, V; standing
for the coupling parameter of the electron-phonon interaction, w; denoting
the phonon frequency and N: being the number of phonons of the wave
vector ¢ in thermal equilibrium, the elements of the operator calculus derived
in paper [4] are — i contrast to paper [1] — not used.

FORMULATION OF THE PROBLEM

In the treatment of paper [3] the cylindrical coordinates r, #, z were used
and the cylindrical ring with r; the inner and r, the outer radii was limited
by the planes z = 0, 2 = L, and located in a homogeneous but time dependent
magnetic field parallel to the z-axis and given by
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with 7 denoting the average radius of the ring. The magnetic field is chosen
80 as to give rise to an electric field of the magnitude
E°r

r

E = exp st

and pointing in the direction of an increasing 9. For a thin enough ring

((r2 — 71)/r < 1) this field is almost homogeneous and for s sufficiently small
it can be considered stationary.
In the effective mass approximation for the ring thin enough the electron
Hamiltonian can be written in the form [3]:
1
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are momentum components corresponding to the new variables
E=7rd, n=r—1r, { ==z.

For the thin ring the term linear in E° of the Hamiltonian
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can be written in the form

ek®
Hp = ——— P; exp st.
m*s
The other terms, having their origin in
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div 4

need not be considered since div 4 — —(2cE°[s7) exp st and for the ring thin
enough also A2 = [(cE°/s)exp st]> exhibit the non-operator behaviour owing

- . - s- )
to which the exponential factors exp | + Wm& andexp [ — Nm ot| are elimi-
)

nated from the density matrix equation expressed in the interaction represen-
tation.

We shall use the representation in which the Hamiltonian of electron and
phonons is diagonal. The characteristic functions of Hy are defined by the.
relation

Py = Q Vexp [i(ks& + kay + ksl)]
with k standing for (k;, ks, ks) and r standing for (&, 1, £). The functions ¥.
satisfy the boundary conditions
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in which Ly = 2nr, Lo ==y — 1y » Is =L, and LiLsLs = . Since in the new
oooﬁmsmamm exp (ik . r) = exp [i(k1€ + kan + ks?)] corresponds to the expres--
sion exp (ik . 7), the electron-phonon interaction can be written in the form

H; = > V,a, exp (ig . v) + Vyar exp (—ig . r)
7

with ¢ . r denoting ¢:& + 9217 + g3, Vq standing for the coupling parameter
and aF, a, signifying the creation and annihilation operators of the phonon
with the frequency w,. The phonon Hamiltonian can be written in the form.
Hy = M?«Maa + #)kiwg and its characteristic functions [... Ng...> represent.
the numbers of phonons having the corresponding frequencies.
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DIFFERENT APPROACH

Though Hpr is time dependent, the density matrix equation can be, as
a consequence of the fact that Hr commutes with Hy, expressed in a repre-
sentation similar to that used in paper [1]. If a new density operator o” is
defined by the relation

¢ = QRo"R-1Q
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7 ) el °P;

Q =expi— —|Hot + | He(t"At'|| = mxw — —|Hot +————expst
k A m*s?

i
R = exp IMQR

then the density matrix equation takes the form
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in which H is defined in the same way as o”. If ¢” is expressed in powers of H;
and only the terms up to the second order are retained (2) gives the equations

Wit t) i,
ks (A ORCHO) 3)

&@m@o > S

4 ” ”
P Lo, (to, £), H;(t)]

in which g and g, stand for the first and second order terms of the expansion
2"(t) = ¢"(to) + o1(to, t) + ez(to, £) +- -

Since for a convenient s we assume the realization of the steady state we can
choose fp = 0 and the solutions of the equations (3) can be written in the form
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In accordance with paper [1] we assume H; = Hn exp (—1/10), with Hipn
denoting the time independent electron-phonon interaction and 7o standing
for the damping parameter characterizing the process affesting electron-phonon
collisions after the time corresponding to the expected steady state. This
damping is equivalent to the presence of the additional term [p"(t) — o”(0)])/7o
in equation (2). Since we are interested only in the diagonal matrix elements
of the density operator, we can say this additional term is similar to the term
suggested by Lax [5] representing the interaction of the system with the
environment. The only difference between these two terms consists in the
fact that in our case, owing to the fact that ¢(0) is the steady state density
matrix, the interaction tends to preserve the steady state once obtained,
while in Lax’s case the interaction tends to return the system into a thermal
equilibrium.

Since the electron distribution function f(k) represents the diagonal elements
of the matrix f defined by the relation

<klflk> = > <kN|o|kN>
N

and satisfying in the case of equilibrium phonons the equation
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we shall be interested in the diagonal elements of the matrix o. Owing to the
fact that the diagonal in |N> matrix elements of H.(f) and H; equal to zero,
the diagonal in |N > matrix elements of g, (¢) equal to zero too and the equation
for the steady state can be obtained from the relation

S <kNlos)kN> = <k|fot)k> =
N

It

If in the expression for @ the function exp st is expanded in powers of st and s
is assumed to satisfy the relation
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in which t is the relaxation time of the considered scattering process, the
retention of the first three powers is sufficient and @ takes the form
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The factor exp { — ((EPg2m*h)2} is, except for the replacement p, - P;,
identical with the corresponding factor of paper [1]. Owing to its time inde-
pendence the factor exp { — 1eH°Pg/hm*s?} will not play any role in expressing
the diagonal matrix elements of g, since it will be compensated by the complex
conjugated term. The factor exp { — (teE°Pg/m*hs)t}, contrary to paper [1],
results in the appearance of the energy shift. To the electron energy &(k) the
value eE°ksfm*s must be added now. But it must be mentioned that for the
parameter s only the upper limit was given. If a convenient lower limit is
chosen for s (e. g. in accordance with paper [3]: s > Asfh where Ae is of the
order of the spacing of the translational electronic levels), the energy shift is
nonessential and the same kinetic equation for the electron distribution
function as in paper [1] can be obtained. The mentioned limit for s is responsible
for P; independent part of the velocity operator v- being negligible and Ps/m*
can be taken for v,.

DISCUSSION

The solution of the derived kinetic equation represents a rather complicated
problem. Nevertheless it can be used with advantage when electron-electron
interaction is strong enough to cause the distribution of electrons in the form
of a Maxwell distribution with the electron temperature and the momentum
shifted in the direction of the applied electric field. The electron temperature
and the momentum shift are determined in such a case from the conservation
laws for energy and wave vector respectively. In such an approach the standard

Boltzmann equation is applied even in a case of a strong electric field [6]. -

Since the Boltzmann equation is well substantiated only in those cases in
which the distribution function can be approximated by a finite number of
terms of the series in the powers of the applied field [7], the derived kinetic
equation is for the shifted Maxwell distribution more convenient than the
Boltzmann one.

Though the mentioned equation was derived with the assumption of equi-
librium phonons one can generalize this approach even for a case of non-
equilibrium phonons. When doing so we must use the general property of
diagonal singularity pointed out by van Hove [8], securing negligibility
of the terms containing nondiagonal elements of the density matrix in com-
parison with the terms containing its diagonal elements. Van Hove showed
that from the matrix elements

<alVAL V.. A, Vie'>

(in the matrix element at least two factors V, representing the interaction
between the systems, occur and A; are operators diagonal in the considered
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representation -- in our case their role is performed by the exponential factors
having their origin in the transfer to interaction representation) those with
« = a' are larger than those with « % «’ and their rate increases with the
increase of the size of the system.

With this in mind one can derive from the relation > <kN _mm_mz > = 0 the

n
kinetic equation which differs from (1) in the fact that the phonon distribution
is not the equilibrium one. Since the effect of a strong electric field on phonons
(via electron-phonon interaction) is weaker than its effect on electrons we can
expect the phonon distribution to satisfy the standard kinetic equation even
in case of a strong electric field. We have thus linked equations for electron
and phonon distributions leading to the generalization of Nakamura’s paper
[9] for the case of hot electrons. In paper [9] the electron system is assumed
to be in the uniform motion with the drift velocity and the electron distribution
function is given by the equilibrium one with the momentum shifted in the
direction of the applied field. To this purpose the derived kinetic equation
can be used even in the case of a strong electric field.
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