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THE INFLUENCE OF DISPERSION ON MEASUREMENT
OF ATTENUATION IN ULTRASONIC WAVEGUIDES

IVAN L. BAJAK, Zilina

A study is made of the influence of the dispersion on the measurement of
the attenuation of longitudinal ultrasonic waves in a cylindrical waveguide,
the radius of which is larger than the radius of the transmitting and receiving
transducer, when the pulse technique is used. Theoretically and also experi-
mentally it is shown that the deflection of the echoes envelope from exponen-
tial shape will be smallest if the ratio of waveguide and transducer radii is
near 1.4 (the radii of the transmitter and receiver were considered to be
equal).

INTRODUCTION

The measurement of the absorption coefficient of logitudinal ultrasonic
waves in a cylindrical waveguide needs an analysis of the influence of dispersion
on observed. values for its interpretation. This necessity has its origin in the
fact that a mechanical signal on the entrance of the guide excites in it a definite
number of modes which have various phase velocities. Owing to the difference
of phase velocities of modes a complicated interference of the modes is observed
and it deforms the measured values. The amplitudes of the modes are deter-
mined by boundary conditions at the radial walls of the guide and by pressure
distribution across the entrance of the guide.

Redwood [1] dealt with the spreading of longitudinal ultrasonic waves in
a cylindrical waveguide of an isotropic solid in which the waves were trans-
mitted by a transducer on the face of which the amplitude of pressure was
constant. Redwood assumed that the guide was an ideal liquid cylinder with
free walls and chose the boundary conditions analogous to those in a solid,
i.e. the pressure was zero at the radial boundary of the guide. Owing to the
similarity of the boundary conditions such a type of guide gives us a good
picture of the mode structure also in a solid waveguide, but in this latter
case the transverse waves arise at its boundary. The loss of energy due to
partial conversion of the longitudinal to transverse waves was estimated by
MecSkimin [2] for the first mode and Redwood [1] extended his analysis
to other modes.

Measurements of attenuation in waveguides are frequently performed in
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samples, the radius of which is larger than the radius of the used transducers.
The beam of ultrasonic waves transmitted in such a sample is continually
spreading and it reaches the radial walls of the guide on a definite length and
then will be guided. If we compute the structure of modes and the possible
errors (deflection from exponential shape) for this case according to Redwood’s
assumption that the amplitude of pressure over the face of the transmitter
is constant we should get an identity between dispersion and difraction losses
for the first group of echos which beahve according to the assumption that
the propagation takes place as in an unbounded medium. This is especially in
the case of larger radius guides in descrepancy with the experiment.

In the present paper we shall discuss the case when the radius of a waveguide
is larger than the radii of transmitting and receiving transducers. We shall

limit our analysis to the case when the radius of the transmitter is much
greator than the wavelength .

THE CYLINDRICAL WAVEGUIDE EXCITED BY THE FAR FIELD OF A
PISTON SOURCE

The measurement of the absorption coefficient of longitudinal ultrasonic
waves by the impulse-echo method is based on the assumption that the
propagation of an ultrasonic pulse containing a large number of cylces is
identical with the propagation of a single frequency continuous wave trans-
mitted under the same conditions in an investigated semiinfinite medium.
So the continuous wave theory can be used.

We assume the waveguide to be a semiinfinite cylinder of an ideal liquid
with free walls. The pressure at the radial walls is zero. The cylindrical coordi-
nate system (r, g, z) is chosen s0 as to have its origin in the centre of the
cylinder’s base and the z axis identical with the axis of the guide. Owing to
radial symmetry we can assume that the solution of the wave equation will
be independent on ¢. Therefore the wave equation for the propagation of
waves in an ideal liquid cylinder may be written[3]:

Pp lop Pp 1 ap "
or? roor a2 ¢ op
where ¢; is the velocity of longitudinal waves in an unbounded medium,
P = p(r, 2, t) is the pressure at (r, 2).
If we take into account only waves spreading in the positive direction of z,

the general solution of the equation (1) with the boundary condition p(b, 2, t) =
=: 0 can be written in the form:

Yoi7r .
o(r, 2, t) = G5, l@f exp [i{wt — &yz)] (2)
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where b is the radius of the guide and
ki = [(w]/ca)® — (yos/b)2]2 3)

while yg; are the roots of the Bessel function Fo(z), Gy are constants and «
is the angular frequency.
The wave (2) is given by the supersposition of modes

Yos7

pi(r, z, t) = G4 le exp [i(wt — ks2)]. 4)
The amplitude Gy is given as ‘
b
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where po(r) is the distribution of the amplitude of pressure across the os.ﬁ.mzom
of the guide. The relation (5) was deduced by multiplying the equation (4)
by Fo(yosr/b) X r and integrating it between the limits 0 and b. Then the
ortogonality of the functions Zo(yesx) _\& on (0, 1) interval was used.

As we can see from (5) the amplitude of the mode depends on po(r). We
perform the determination of the function Po(r) in the case a > 4, a < b,
where b is the radius of the transmitter as follows:

The pressure far from the circular piston source is given (see {4]) as

a? Fi(ka sin 9)

exp[i(wt — kR,] (6)
R kasin® Pl !

pir, 2, 1) ~

where R is the distance between (r, z) and the centre of the transmitter, & is
the angle between R and the axis of the transmitter, k — wleg, Fi(x) is the
first order Bessel function. The field (6) can be devided to some parts. The
first part will be given by the field within the conical surface, the acceptance
angle of which is determined by the relation (see Fig. 1)

ka sin %w = Y12
where y12 is the second root of £i(z). The n-th part of the field (6) is given
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by the field between two conical surfaces. The acceptance angle of the externa-
surface &, is given as
ka sin ¢, = Y1, n41 (7)

while the acceptance angle of the internal surface is
ka sin 9y _1 = g4 (8)

where y1, is the n-th root of & 1(x). It is evident that the pressure at every
conical surface which was chosen in this way is zero.

We shall assume now that each part of the field (6) excites the guide sepa-
rately and the resulting disturbance that will spread in the guide will be given
by a superposition of modes excited by all parts of the field.

The first part of the ultrasonic field reaches the radial wall of the guide
at the distance z; from the origin, the n-th part at the distance z,. If ¢ > A,
the first few parts of the field fulfil the relation sin 9, = tg 9,.So we can
write for these parts

kab 21 b2
tmo=—— = |7 (9)
Y1, 041 Yi,nu81 | 4

where §; = bla.
The amplitude of pressure of the ultrasonic field in the n-th part will be:

a _(&.HQ\r 17 E
— sl for re Ei@w b
Po(r) = k r Y1, n+1
0 for r e 0; B b
Y1, n+1

where 4 is a constant independent from x.
We assume now that only the n-th part exists. The modes excited by this
part will have the amplitudes

24 A;y
Gin = = (10)
k sy F{(yse)
where
1
Asn = % Folyosz) [ F1(ys, n+17)| dz (11)
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and the disturbance p(r, 2, t), 2 > 2, excited in the waveguide will be described
by the equation

Yosr 4
Palr, z,t = GinFo !@I exp (1 Vin) (12)
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where the phase
%\3 = —.Q~ R e — Ngv = \nNQ@ I_I AS — 1 udH_

is given by the requiremeny that the modes (12) must be in phase or in phase
opposition with the disturbance (6) at che distance z — zn. (The phase oppo-
sition of the mode will be expressed by the minus sign.) The term (n — 1)w
in ¥- is a consequence of the change cf the sign of #1(z) with the change of n.
As @ > A and sin 9, = tg d» we can put R = z, and so we can neglect the
change of phase within each part of the field.
The resulting disturbance thao will spread in the guide in the distance
z2 > 218
P, 2,8) = > [ 2, Gyn oxp {il(ks — K)zn + (n — 1)m]}] exp [i(of — ksz)] (13)
z2Z2 i=1 n=1
If we compare (13) with (2) the G4 can be written .
G5 = 2 G expli[(ks — k)zn + (n — Dn]} = |G4] exp (i¥)). (14)
ne=1
Let the receiving transducer be placed in the waveguide at the distance z > 21.
The electrical response of the receiver on the wave p(r, z, t) is
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where (' is the radius of the receiver.
From (10)--(15) we get
Uz) ~ |2 Usexp [i (wt — ksz + )] (16)
-1
where
2 Yos .
Y012 1(or) I 1 [ 1> Asn exp (i gsa)]
q\‘ 82 n=1
o (17)
1 Yo .
Yon I {(Yon) F1 o |2 Ain exp (i g1a)|
n=1

while sz = b/c and @;, are given by the relation
Pin = (ky — k)zn + (n — 1) . (18)
If cqyoi/wd < 1, the relation (18) can be written as
L[ yej
gin=——|—"—| (0 — ) m. (19)
81 wmﬁ,:.ﬁ

The electrical output voltage (16) can be graphically computed as the
absolute value of the sum of vectors. The phase angle between the vector
representing mode 1 and the vector representing mode j at any z is given by
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vis = (o — ky)z + (W5 — ¥). (20)
We can see from (16) and (17) *h1t the envelope of echoes causes loss or gain
also in an ideal liquid cylmder. 11 the interference of modes is constructive,
a gain, but with a destructive interference of modes, a loss is found.
'The integrals A;, can be numerically computed and the curve

a(z) = 20 log Mﬂsvv
zZ2 ¥

gives the correction of errors that arise as the consequence of dispersion.

[dB] 21

COMPUTATION OF THE DISPERSION LOSSES

. m . m
The computation of _:Mﬂh\s exp(i gsa)l/| > A1n exp(i g1n)], ¥ and of U,/U,
= n=1

was performed for various values of b/a in cases when the radii of transmitting
and receiving transducers are equal (s; = s, — ). We take only the first five

Table 1
5 5
[ 2 Asn exp(igsa) |/l S A1n exp(ign)|
n=1 n=1
e e 2 _ 3 _ 4 5
1.1 .1369 .0822 .0439 .0168
1.2 .1383 0774 .0406 .0210
1.4 .1429 .0709 .0443 0177
1.6 .1433 0673 .0285 0154
1.8 .1479 .0654 0262 .0285
2.0 .1480 .0626 .0238 .0280
2.3 L1491 0597 .0242 .0214
2.5 .1492 .0490 .0252 .0135
Table 2
Z B | ¥,
2 | 3 [ & T » !
1.1 —- 3.308 — 1.443 — 2.721 -— 3.308 - 0.721
1.2 ] — 1.760 — 1.144 — 2.029 -— 3.870 — .664
1.4 — 1.538 — .686 — 1.281 — 2.284 — .569
1.6 — 1.341 -— .339 — .204 — 2.873 — .498
1.8 — 1.211 — .031 .239 — 1.742 — 440
2.0 —- 1.085 .188 .b57 — .647 — .396
2.3 -— .946 527 .887 .656 — .346
2.5 — .881 .931 1.047 1.506 — .319
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parts of the ultrasonic field into account as the prevalent quantity of ultrasonic
energy is carried in them and the amplitude of the pressure rapidly decreases
with the increasing angle 9. The accuracy of the computed values is about
2 9%,. The results of the computation are in Table 1, Table 2 and Table 3.

Table 3
q“\QH Am~ = Sz
& o 7| 2 3 A 4 5
1.1 — .082 .032 —.010 .002
1.2 — .065 .008 .064 — .006
14 —.011 —.030 021 — .004
1.6 .042 — .042 .005 .006
1.8 .089 —.038 —.007 .015
2.0 127 — .023 -—.014 .007
2.3 173 .004 -—.018 — .008
2.5 .202 014 — 017 - .009

The minus sign at the value Uj/U; in Table 3 means that the phase angle
between the vector representing mode 1 and the vector representing mode j is
y15 + = (see also relation (20)).

We can see from Table 3 that the modulation of the echo envelope will be
smallest if s ~ 1.4.

The correction curve (21} can be constructed for every size of s. The echoes
that correspond- to the distance z <C z; may be corrected according to Seki
et al. [5] while the echoes for z > 2; are corrected by (21).

THE EXPERIMENTAL STUDY OF THE DISPERSION EFFECT IN AN
ULTRASONIC WAVEGUIDE

As we had not a suitable sample of an isotropic solid, the experimental
investigation of the dispersion effect was performed on two samples of a single
crystal of Si. The sample number 1 (radius 10 mm, length 30 mm) and also the
sample number 2 (radius 7 mm, length 22 mm) were optically polished
(41 um) and the axis of the cylinder was indentical with the (1, 1, 1) direction
of Si. Redwood [1] has made the measurement of dispersion effects in a single
crystal of Ge (1, 0, 0> and he showed that the results were similar to those in
fused silica. Besides, the single crystal of Si is aelotropic in the (1, 1, 1) direc-
tion, and we can assume that the deviations caused by anisotropy will be small.

We realized two cases: s = 2 and s = 1.4. The correction curve (21) was
graphically constructed for s = 2, while the phase angle between the vector
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Hom.wmwmzﬁsm mode 1 and mode j was for every z computed from relation (20)
which can be for CaYos/wb < 1 rewritten in the form

2 2
Yo7 - Youp

W)

Yy =

where 2’ is the distance z in [63/2] units. The distance
or minima can be determined from the leng
the first and the j-th mode changes from 0

of neighbouring maxima,
th Ly; on which the phase between
to 7. We get from the relation (20):
4 x2 b2
u= 71
Yoj — Yo L4
The values Ly; (j = 1, 2, 3, 4 and 5) are in Table 4.

Table 4

Ly; [b2/4] 1.5991 .57129 .29630 .1818

{dB]
20

15

101

dispersion * measured value
x corrected value

50 100 150 200 250 zfem)
“m;m. 2. The M_od of attenuation against distance at 66 MHz in sample number 1 if the
ratio of specimen and transducer radius equals 2. The measured values are corrected
as to the influence of the dispersion for the distance 2 > 2.
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Fig. 3. The apparent dispersion loss in output voltage [dB] plotted against the distance
from the transmitter z* [b2/1] in the cylindrical waveguide, the radius of which is twice
as large as the radii of the transmitting and receiving transducers.

With regard to the predominant role of the first two modes on the modulation
of the echo envelope, the distance between the two main maxima (minima)
‘will be about 3.198 [b%2/1]. As the unit [62/1] is relatively big, a large number
of echoes is necessary if several main maxima (minima) are to be observed. The
correction (21) is important especially if there are not even two main maxima
(minima) on the envelope of echoes. When there is a large number of maxima
(minima) on the echo envelope we can make the correction according to
Redwood [1] so that the amplitudes of echos are plotted in logarithmic scale
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Fig. 4. The plot of attenuation against the distancé from the transmitter at 66 MHz in

sample number 2 if the ratio of the specimen and transducer radii equals 1.4 (one probe).

The places where the 214, 3rd and 4th modes are in phase or in phase opposition to mode 1

are indicated in the scales by y12, 913, ¥14. The arrows in the scales show whether the
competent mode increases or decreases the attenuation.
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of the decrease of echoes. The
1 results of the measurement i i
%A = 704 em, 1 = 14.19 x 19-3 cm in this cage e g2 he

Mwmudww. envelope of all others echoes the dispersion effect was observed. The
ozu<wo HM: M:E& ( MMC was plotted (see Fig. 3) and it was subtracted b,on.y the
ol echo envelope in Fig. 2 for z > 2 (in Ty
. = 21 (in Fig. 2 and also in B} 4t
MNMSS that correction (21) can be applied already for 2 > 29). Hrommﬁmw M.M
o Mﬂ»m MW?E@Q from the slope from which the attenuation can be read ¢
& ratlo s = 1.4 wag brought about in sample 2. The modulation ow the

echo envelope was less than .5 dB in this case. The results of the measurement
are in Fig. 4 and the photography of echos is in Fig. 5.

As the deflection of echo envelope from the exponential shape was small
we did not construct the correction curve (21) for this case and the comparison
of the computation with experimental data was made by the determination
of the positions of maxima and minima on the envelope of echoes. There are
scales in Fig. 4 which show where the second, third and fourth mode are in
phase or in phase opposition to mode 1. The arrows in the scales show whether
the particular mode causes an increase or decrease of the attenuation.

We can say that in both cases the computations of the dispersion losses
are in good agreement with experimentally found values. *)
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