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ON ABSORPTION OF SOUND IN DIELECTRIC SOLIDS
MILAN OZVOLD, Bratislava

This paper deals with the theoretical investigation of the sound wave
absorption in dielectrics caused by anharmonic interaction of the sound with
thermal phonons. The absorption coefficient and the effective elastic
constants are determined from the solution of the wave equation in the qua-
siharmonic approximation and the nonequilibrium gas of the phonons is
described by the Boltzmann equation.

INTRODUCTION

In the present paper the sound absorption on thermal phonons in dielectric
crystals is theoretically investigated. The sound wave, propagating through
the crystal, interacts with the thermal phonons through the anharmonicity
of the interatomic forces. Thermal phonons are also subj ected to this interaction
with one another and therefore have the final life time z. If the sound wave
frequency £ is higher than the frequency of collisions of the thermal phonons
(9t > 1), this interaction can be investigated as a collision of sound wave
phonons with individual thermal phonons [1] (see also [2]). However, in the
case of the sound wave, except for the low temperatures and high frequencies,
this condition is not fulfilled. In the reverse case, when Q1 < 1, we can consider
the interaction of the sound wave not with individual thermal phonons, but
with the entire assembly of thermal phonons. The case when 7 ~ 1 must
usually be treated as an interpolation between the two limits. The extra-
polation from the region of the infinite life time of thermal phonons into the
region of finite v was made by Simons [3] and further used by Maris [4],
these calculations are a modification of the quantummechanical approach of
Landau and Rumer [1]. The theory for the calculation of the absorption
coefficient in the region Qv < 1 was suggested by Akhiezer [7], and extra-
polated in a simple way by Bémmel and Dransfeld [6]. An improved
version of this approach has been given by Woodruff and Ehrenreich [5].

In this paper the problem of sound propagation, its absorption and the

. thermal conductivity in dielectric crystals are studied from a uniform point

1



of view. Our method is based on the solution of the Boltzmann equation for
a phonon gas and the elastic wave equation in the quasi-harmonic approxima-
tion. The term expressing the interaction of the acoustic wave with a phonon
gas enters the wave equation and in this way determines not only the sound
absorption, but also the elastic constant change. In the mentioned works, the
problem of elastic constants was not solved. Leibfried and Ludwig [13]
showed that the sound propagation at high temperatures is described by
adiabatic elastic constants. Our method is not limited to high temperatures
and enables us to obtain the elastic constant dependence on Qz. A contribution
to this problem has recently been made also by Géetze and Michel [16].
They started from the same system of equations as we did. The principal
difference between their work and this one consists in the method cf the
Boltzmann equation solution, further their results are very implicit and there
is little space devoted to the sound absorption; besides, they do not cover the
whole range of Qv.

THE WAVE EQUATION IN QUASI-HARMONIC APPROXIMATION

If the crystal is subjected to a deformation, which is described by a strain
tensor ui; (for deformations which are not too strong)
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u; — components of the displacement vector, x; — components of the position
vector; then the frequencies of thermal phonons o in the quasiharmonic
approximation are the strain tensor functions
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(summation is understood over the repeated indices), g is the wave vector of
the phonon, s indicates the polarisation, wo is the frequency in the undeformed
crystal, and yu(q, 5) is the generalized Griineisen constant. In accordance with
Woodruff and Ehrenreich [5], the phonon gas will be described by the
distribution function %Amv s, 7, t), which measures the phonon density with the
wave vector ¢ and with polarisation s at the position 7 and at the time ¢ This
description is valid as long as the phonon packet is localized within the displa-
cement wave length and its frequency follows the deformation adiabatically.
For most phonons this holds if

kT
Q< — (3)
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where k is the Boltzmann constant. The distribution function will be deter-
mined from the solution of the Boltzmann transport equation.

From the theory of elasticity it is known (see for instance [9]), that if oy is
the stress tensor then the motion equation is
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where g is the density. The stress tensor is determined by an adiabatic change
of the internal energy of the crystal at an infinitesimal deformation

oF
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where E is the internal energy and S the entropy of the unit volume. The
internal energy of the system consists of the elastic energy we(us;) and of
contributions of individual oscillators [10]
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The energy could have even other terms (anharmonic ones), but in the first
approximation they are not functions of deformations and therefore do not
contribute to the stress tensor. w(g, s) are eigen-frequencies of the deformed
system and their dependence on the deformation is given by Eq. (2). The

* lowest approximation for ue is given by the Hook law, the elastic energy is

a quadratic function of the strain tensor

uer(uig) == uer(0) + § Cigiathisutir (7

where Cy are elastic constants. The entropy of the nonequilibrium phonon
gas is

8=k [(f+HIn(f+1)—fInf) (8)
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hence the derivation (5) has to be done at constant f. Now we can write the
motion equation (4) in a more explicit form

2uy PPy
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From this equation we see that the undamped acoustic wave may propagate
through a crystal only at zero temperature and then it is described by the
elastic constants Cyjxr.



SYSTEM OF EQUATIONS OF THE PROBLEM AND ITS SOLUTION

Equations (9) together with the Boltzmann equation

g of ow af dw a
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form a system of equations for our task. However, to solve equation (10) we
must know the explicit form of the collision term. We express the collision
term by means of the relaxation times for the normal phonon-phonon collisions
(g, 5) (the N-processes), which conserve the phonon wave vector at the
collision and relaxation times for the other processes 7z(¢, s), which do not
conserve the phonon wave vector. Both these processes relax to a lccal equi-
librium distribution function, which is characterized by the local temperature
T(r,t) and in the case of the N -Processes this distribution is shifted in the
phonon wave vector space away from the origin. This expression of the collision
term which is based on the work of Callaway [8] was used also by Woodruff
and Ehrenreich [3].

The distribution function towards which the N -processes relax can therefore
be expressed as

5 = {exp [(ho — 1. 9T — 131 (1)
and the distribution function for the other processes as
Jo? = {exp [fw/kT] — 1}, (12)

The parameter M_ which in our case is also a function of 7, t determines the
shifted distribution function discussed by Callaway [8] and Klemens [18].

The quantities 7' and 1 are determined by the following conditions: By the
effect of mutual collisions of the thermal phonons in the first approximation
their unperturbed thermal energy is not changed and therefore we have

5 of(q, s, 7 ¢
> (g, s) E = 0. (13)
7.5 ot coll
For the normal processes, the conservation law of the wave vector holds, from
which we get
L [2
>q i = 0. (14)
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Introducing the local equilibrium phonon distribution we use the temperature
T(r,t), which determines the temperature of the system in a small region
around the point 7 and at a small 1ime interval near the time £. The minimum
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magnitudes of this region and of this interval are given by the mean free path
and by the mean life time of the phonons. However, to understand 7 as point,
or ¢ as time moment, this region must be smaller than the sound wave length,
or this time interval shorter than the sound period, that is, Q7 < 1 must
hold (the phonon mean free path equals vz, where v is the mean sound velocity).
It is obvious that if 27 > 1 the local equilibrium states do not exist in the
crystal and thus T approaches T, as Q7 becomes greater than unity. This
incompleteness of the conditions (13) and (14) does not cause real difficulties,
because, as we shall see below, the expressions containing (7' — 7T') and i dis-
appear from our results as Qv becomes greater than unity. Ty is the temperature
of the undeformed crystal. R
To the first order in u, (T — Ty) and 4 we have

ToC(5, 5) T—Ty 3.3
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where fo is the wroboz distribution function in the thermal equilibrium and
. hw?
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is the specific heat of the unit volume due to the mode (¢, s) in the undeformed
erystal, therefore > C(g, s) = C is the specific heat at the constant volume per

s &
unit volume. H*‘Emwmu we will assume that the sound wave propagates in the
direction of the z axis, which we identify with one of the principal crystal
directions, that is with the direction in which the pure longitudinal or transverse
Wwave can propagate, then the displacemerit has the form u; = e;u, where e; are
polarisation vector components and

= ug oxp [¢(2¢ — o02) (17)

where ug is the amplitude, £ is the frequency and ¢ the sound wave vector.
Thus the wave equation (9) and the transport equation (10) can be rewritten
in the following form
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where ¢ = Cizztir, ¥y = Yzl
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ve(q, 8) is the group velocits of the thermal phonons in the direction of the
sound propagation and

[2(@, $)I"1 = [ea(@, O + [en(g: 8)] 7 (21)

Equations (18), (19) together with the conditions (13), (14) and with the
relation (20) make the system of equations of our problem, which we shall
solve. If we retain in the Boltzmann equation (19) only the terms of the first
order and we seek the solution in the form f — fo ~ exp [¢(£2t — o2}], then its
solution is the function

ToC(q, ) T_T p
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The absorption coefficient of the sound amplitude can now be determined
from equation (15) as an imaginary part of the wave vector (assuming chat
o> a)

o —

maoo.
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and the effective elastic constant is
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From the conditions (13) and (14) we get
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Our formula (24) for the elastic constants completes the results of Wood ruff
and Ehrenreich [5], which we have obtained as the relations (23), (25) and
(26).

SPECIAL CASES

In this section, we shall determine on the basis of the relations (23—26)

« and ¢ in the following cases: a) O < 1; b) Q> 1> Qwy; ¢) v > L

However, not even these limitations are sufficient to solve the problem.

Therefore we shall accept some simplifications. We shall assume that y and =

are even functions of g; then for the expressions of the following type we have
for m -+ n odd

.M F(y, v, SOVQM_QM - (27)
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where F(y, T, wp) is some function of y, T and we.

Qv bﬁm < 1.
CToQ0 ¥T'oy)?
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Tn these expressions the triangular brackets represent the following average
(ay = 3. €@ s)a(d C (30)
q.8 .
and K, is the z-z component of the steady-state thermal conductivity
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This expression is just the generalized Callaway [8] mxﬁmmmmwob of the thermal
conductivity. The tensor of the thermal conductivity K is determined from
the following expression

Q= —K.gradT — iK . 5(T — To) (32)

where @ is the heat current density vector



@ =% 2 woif(g, s,7) (33)
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where for f we must take the function (22) in the limit Q7 — 0 and v207 € 1
(low temperature gradients). The absorption coefficient (28) differs from the
results obtained by Woodruff and Ehrenreich [5] and Guyer [21], (apart
from being more generally derived) in the first term, which is also called the
Akhiezer attenuation [22, 23] if we substitute for & its approximate expression
& = w?p, where w is the phase sound velocity in the direction of the z axis.

The expression (28) holds for the longitudinal as well as the transverse wave,
where for the polarised wave in the direction e and propagating in the z
direction y = yz:e;. In the Debye model y can be expressed by means of elastic
constants of the second and third order [11, 12]. From the works of Mason
and Bateman [12] it follows that for the cubic crystals and the transverse
wave (t) {y> = 0. From this it follows that

Qﬂcbo.
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while for the longitudinal wave the absorption and elastic constants are given
by the whole expressions (28) and (29). The expression (29) in the adiabatic
limit Qv 0 gives the adiabatic elastic constants. For the isothermal elastic
constants (7' = Ty, Oz - 0) we have

Eisg =— & — QﬂoAYmv (36)
€ad — €ig — QSQAQ\VM

These are well-known relations from the theory of anharmonicity [13]. Con-
sequently in the limit Q7 < 1, the propagation of sound is described by the
adiabatic elastic constant and by the absorption coefficient (28).

b) Qtr > 1 > Quy (the second sound region, [21] and references therein).
In the next two cases b) and ¢) we shall accept the simplyfying assumption
about the energy spectrum of phonons. To explain the thermal conductivity

[19] and absorption of sound [20] in InSb, the following model of the phonon
spectrum turned out to be convenient

-~ vg  forg) <g<¢? .
ot q

@(g; ) "o for other values of ¢ (37)
where v; is the average phonon velocity of the mode s with the wave vector
from the interval {¢{?, ¢®>. Now the index s does not indicate the branches
only, but the parts of the branches too, where it is possible to approximate
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the phonon spectrum by the linear relation (37). In this Bmﬁb we u:.pmm
distinguish between two cases, which are determined by the following quantivy

-1
%Hl_l.AWV . (38)
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If p2 = 1, that is, the acoustic wave velocity is equal mo the mooo_s& sound,
velocity, this wave is strongly absorbed and we cannot directly apply mwww.mw-
sions (23) and (24) which were derived from (18) Eﬂ@u the @mmﬁbwa_m.s o Hwé
absorption. Therefore in this case we must start directly from equation (18),
then,

Eis

= o— [(1 + X2ei) — 1] (39)
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where we have used the following notation

Aw_v» + Qlzvy®y (41)
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and
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and ¢ is m?mn by Eq. (37). For the interaction of the acoustic sﬁdm with only
18
one type of phonons (s =1) we have p?=?/3u? and A = 5{Qw) +
+ (Qugd~L. This A(s = 1) differs from the 4 used by Qz%mw. 213 wE% by the
numerical coefficient at Qry. If {y) = 0, the sound absorption will be small
and for « and ¢’ we get
Qﬂobo.

a=—— <) &€ = e p=1 = 0. (43)
2e

For (> # 0, X given by Eq. (41) will be determined by the firs¢ term, which
is now much greater than the second and if it is possible to put X < &, we get
2
nguw m\”m»mu%“u—. APPV
wmwmk_
This absorption coefficient corresponds with the one derived by Guyer [21].
Ifp+#1,
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The owwwmmmmoﬁ (45), apart from containing the Akhiezer attenuation (the first
term), differs from the result of Guyer [21] also in the last term. From Eqs. (43)
and (44) we see that the acoustic wave propagating through the crystal .émor
the w&oa:._% equal to that of the second sound is characterized by isothermal
elastic constants. But for the waves with p = 1 the elastic constants are given
by the expression (46). ¢

c) .Da.V 1. In this region we also use the approximation (37). By solving
equations (25) and (26) we can see that the terms in the expressions (23) and
(24) containing (T — To) and 2 are considerably smaller than Q7. Consequently
the m%o”oHBmwaobam incompleteness of the conditions (25) and (26) is not
essential. In this region we obtai ! i
e, @bm on e n such values of « and &', which we could

2
QA- )
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= dgg elmQﬁvmv [arctg Qt(Bs — 1) + arctg Qt(fs + 1)], fs = % (44)
©
%
: To 2 1 4 Qg2
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For drm. values of s = 1 and B = 1, the expression (44) is the same as the
absorption coefficient of Woodruff and Ehrenreich [5]. The expression (44)
corresponds also with the results obtained by quantum mechanical methods
[14]. .ZmMF we shall study the results (44) and (45) in a simple Debye model
that is s =1, v5 = v, ¢ = 0, ¢® = ¢gp, y = const. and we shall &mﬁsmimm
the transverse (t) and the logitudinal (1) waves with f: = vfwe, i = vjwn

As fi < 1 and f; > 1 in the limit Or > 1 we obtain v ‘

T Q%ob v\w
= o
SHWEAWvl_t
2 wo \t/1—f (47)
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where we have taken ¢ = w?. For § = 1

. CTof2y?
§ = (48)

8 wdp
The absorption coefficient for the transverse wave (46) in this limit is independ-
ent on 7, it contains the frequency in the first power and the temperature as
T'4C, which is the result corresponding to the theory of Landau and Rumer
[1]. The absorption coefficient for the longitudinal wave (47) does not depend
on the frequency and its temperature dependence is given by ToC[x, which
corresponds to a higher temperature dependence than TC, since with decreas-
ing temperature, the value of 7 increases. It is obvious that the general formula
(44) can contain the terms of all three types (46—48). Thus we come to the
conclusion that the absorption coefficient for the wave of the highest velocity
(Bs < 1 for all s) has a higher temperature dependence and a lower frequency
dependence than the absorption coefficient for the slowest wave (fs > 1 for
all ). This is in agreement with the experiment [15].

Tor the elastic coefficients we obtain

1 1 2

& =g — y2ToC Hll‘lgg ,for g #1 (49)
4 (1 — B

e = ¢ — p2ToC + y?T'oC{n 207>/2, for = L. (50)

Tn the first case, where § # 1, we see from the expression (49) that e —¢
depends on the temperature as T,C while in the second case when g = 1 this
dependence on the temperature is determined also through the relaxation time
z. However, in any case the last term decreases with decreasing temperature.
Thus for the U-processes v ~ exp &faTo, the last term depends on the tem-
perature as a specific heat C.

CONCLUSION

Most results obtained in this paper are not new. However, the characteristics
of the sound propagation in the crystal, that is, the absorption coefficient and
the elastic constants, were obtained from an unified point of view. Our approach
made it possible to determine these characteristics from the solution of the
Boltzmann transport equation (10) and from the wave equation in quasi-
harmonic approximation (9) which were complemented by the conservation
of energy law (13) and conservation of momentum law (14) at normal collisions.
The absorption coefficients in all three limit cases were derived with a greater
generality than it has been done so far {5, 21] and were complemented by the
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Akhiezer attenuation. The main new contribution of this paper is the deter-
mination of the elastic constants in the followikg cases Qtr > 1 > Qtny and
07 > 1 from the general formula derived here.*)
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