Fyzikalny Zasopis 18 (1968), No- 4

e ;\lll\l\l‘\l\\\\\l\l\l\l\

LOCALIZED VIBRATIONS OF LINE DEFECTS
IN A DIATOMIC CUBIC LATTICE

VA Ew&meAﬁwr Bratislava

INTRODUCTION

Recently a number of authors turned from the investigation of point de-
fects to the problems of localized vibrations caused by extended defects.
On the model of a simple monoatomic lattice there were studied localized
vibrations of planes and lines of impurity atoms [1—4], localized vibrations
of dislocations [5] and dislocation dipoles [6]. 1t was found that in contrast
to the point defects whole frequency bands arise, and those are ascribed to
localized vibrations. The bands have their own disperse relations of an optical
or an acoustic character and can be partially overlapped by the frequency
band of an ideal lattice.

Tn this paper the investigation of models is further extended to the investi-
gation of & diatomic lattice. The main points of interest are here localized
vibrations caused by a line defect.

EQUATIONS FOR LOCALIZED MODES

Let us consider a perfect simple cubic lattice with N3 atoms (N even).
Every cell contains two atoms with the masses 71 and mp. Interaction is
considered only between the nearest neighbours and is characterized by the
central force constant i and the noncentral force constants o2, o3. If the
interaction between the various components of ‘the atom displacement vector
is neglected, then using the relation

X = el®tu

for vibrations in the direction of the axis Oz (and similarly for the directions
0z, Oy) we can write:

| for an odd lattice point
| 8

Imo? — 2 2wl e = — afw, 5, k21 + %t 5, k-1) — (1)
i=1
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— o[y, g1, & + Wi, 5L E] —
(i 4§ + k= odd)

and for an even lattice point

— og[wist, g, 6+ Wi-1,7,k]

3
[maw? — 2 wilus, 5,0 = — aalue e + Ut 5,k-1) — (2)
i=1
— aglug, g1,k -+ Wi, -1, 8] —

(¢ + § + k = even) — ag[tis, 1, 5 + i1, k]

The choice of the displacement subscripts is evident from Fig. 1. Assuming
the Born—XKarman periodic conditions in all three directions and using the
properties of the cyclic matrices [8] we can rewrite the equations (1) and (2)
as follows

Mot = {[Ix X @] — [Rn X Pyo + @ X P — 2w X Pol} X up (3)

where

My 0
Pp=osly M =lys X Aoz M2 V

[Qnly = 8u31

mod 2

and X means the direct product of maftrices.
Matrix ML, (and similarly matrix M2,) is a diagonal matrix of the order
N2, whose elements are masses of the atoms of the particular lattice points

N,y wi ¥ 12
2

e

Nz

Fig. 1.
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at odd walls (or even walls, respectively) and the matrix @2, is a matrix of
force constants of the two-dimensional lattice and has the structure
AB B

i 0

D% = . = —afly X Qn + v X Qy — 2p] — (4)
“B IRMHMNZX_ZITHNM%X Iy — 2Ine]

B BA
Ay = 2(on + ) Ay =440 = —a

By = —og

Let us now assume that a lattice is disturbed by the introducing of the
line of defect atoms oriented in the direction of the axis z in such a way that
it goes through a lattice point with the coordinates (1.1). The masses of the
defect atoms are m, = ma(l — e1), my = ma{l — &) and the force constants
between defect atoms are «y = ag(l — y). The displacements of the particular
atoms are again described by equation (3), if in the matrices & and Py
appropriate changes in the force constants and the masses are made. After
solving this equation we could obtain frequencies of localized vibrations.
In this direct treatment difficulties connected with the evaluation of the
Green’s functions arise and therefore we shall use the approximation on
a monoatomic lattice to solve this problem.

In order to do this let us return to the illustrative equations (1) and (2)
and enlarge them by the equations valid for the lattice points containing
a defect atom. If we define a mass M* [7] as

3 3 3
[(MFa? — 2 ] = [mw? — 2 a]t2[meew? — 22 oa]'/2 (5)
i=1 i=1

i=1

and displacements as

N e

—‘13\58& — 2

Ui gk = A
TSHSN — 2

then with respect to the designation

1/2 1
TSH.,NSM — 2 s._ 0

and Fyz = Nz

3
pX
=1
3 1/2
—HSSLSN — 2 M o@u— ™
i=1

1/2
9; wy 5, for an odd lattice point
1

.
[

N e

1/2
OL w5 for en even lattice point
1

o
]

AV w?) =
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the equation (3) will be in the form

SSmHBm O » mHu
"E*Sm_zu — wnp X A 0 Semmmhwv X Fw VEZ Ammb

- ?z ¥ L] — aa[@y + Q5 — 201 X e o+

- (A2 0
+ va\ﬁhwz + mv..mﬁ — 22 X Ao anw X -uzw“ Whe.

To be able to use translation symmetry in the direction of the axis z let us
arrange the right side of the equation (6a) as follows

01 )
e ] el om0
0o 1 0 0
4, ¥ Am WV - mi % Lt o TS x A_ ov i f OV i

0 1 A0 , o
+D%sx? onw_z;on N_ix_“zv. (6b)

As the eigen-values and the eigen-vectors of the cyclic matrices are known {8}
2n

“pzeion, g = —k; b, m=1,2, ...
Quwa(p) = eiown(@)s (Walp)ln = N7 ¢ = 7 ki k,n=1,2 ... N

the solution of equation (6) can be found in the form of go direct product
wye = viye(pe) X qant(@s)- (7)
Putting (7) into (6) we obtain

{Daw(ps) — M*o?onejqan(ps) = 0 (8)

where
Dan:(gs) = D yo@z) + R(w?% 93)

10 . —2 1enm)
UWNI:AQWV = AO Hv X 05: — 2 AU— + ei®s —9 N

—oA%w?) 14 e7i%s mye14%{w?) 0 v“ o Fys
R(w? ¢3) = Aoﬁ\ Aw 4 els \wBHASNVV + & A 0 maeaAL(w?) H

and g3 is a parameter acquiring N/2 values from. 0 to 2m. As ﬁ.& Emaax. R
has only a few non-zero elements, let us introduce Green’s functions and in-
stoad of the equation (8) let us solve the following equation

(lo> + (Do — M *olaxs) IR(w? @3)}qent(ps) = 0- (9)
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Further, it is advantageous to arrange the displacements in such a way
that the non-zero elements of the matrix R may form only one submatrix
different from zero

Similarly we must arrange the matrix of Green’s functions, which is then
divided in the following way

(Dgys — M*?lan)™! = A

_AE _Asv
Ko Ko

where Ky; (M*w?) is the square matrix corresponding to the non-zero elements
of the matrix R (for simplicity we keep to original notation).
Eq. (9) can then be rewritten as
1 l_l —Awww w 0 q1 —0
—ANH” W 1 qz

Hence it can be seen that the frequencies of the searched localized vibrations
and of the corresponding components q (which characterize the disturbed
region) of the vector qax: are the solution of the equation

{t + Ku(M*w? @3)R(02 p3)iqi(ps) = 0. (10)

Equation (8) describes the vibrations of a 2N2-dimensional lattice, whose
matrix of force constants, for R=0, is the matrix DJy.. The matrix Dgye
is of a Hermite type and its eigen-values are therefore real. In our case, how-
ever, due to the frequency-dependent defect, the M *2-local, which satisfies
the equation (8), is gemerally not an eigen-value of the matrix Day:. We
must thus assume that the values M*w? are not only real, but also complex.
From definition (5)1), it can be seen that the complex values M*e? correspond
to the frequencies in the forbidden space between the optical and acoustical
band of a three-dimensional diatomic lattice. These frequencies satisfy the
relation w? < w? < w?. Real M*w? — local correspond then to the region
w? > ol or w? < ! (see Fig. 2b). In order to determine, where the local
frequencies, e. g. frequencies complying with (10), are situated, we must
know the eigen-frequencies of a lattice, which are described by the matrix
of the force constants DYy.. Therefore we shall return to the problem of the

3
1) We consider only the positive root of the square roots (miw? — 2 > og)l/2 and

2 <1
(maw? — 25 o)l/2.
i-1
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possition of the local frequencies later and now turn our attention to the ma-
trix of Greene’s functions.

THE INVERSE MATRIX (Dfy: — M*ofan)™

In order to carry out the required inversion, we concern ourselves with
eigen-values of the matrix DYy:(¢s), which are designated by 29, and there-
fore we determine the solution of the equation

{Dox:(p3) — A01ox2}qane(gs) = O- (11)

Qubstituting the relation (4) in place of ®3. we can see that the solution of
equation (11) can be found in the form of the direct product

. qon = v2 X valg1) X vr(p2) (12)
where
o 27 k 1=1,2
=N k=12 ...N

Substituting (12) into (11) we obtain for the vectors v and the eigen values A°

(—1yH (1eio)
vi=\ V2 2cos¢sf2 (13)

. /)2

dogsin® g3/ j=1

2
»w =4 M o sin @ef2 » 4gg cos? @34 j=2

i1
We point out again that the dependence of erw eigen-values *»wwcs the masses
my and mg is defined by the relation (5) as we in fact put M*e? = A Now we

: . . . ol
opﬂommz%@oocawﬁmr the required inversion of the expression (Djy:

— M*w?lan?).
For N - ©

(DY — M*alons) ™ =
slm

s'l'm’
2 2z
E3
= 1 M eQ.MMMMveM%AQqu exp il(m — Yo o G — poldprdgs (14)

27)2 — w? + A;
. j-1 o !

w y (I — Vg2l
l exp iffm — m)pr + (L — )92

= N v (@a)vis (@) | | T - — mmeaew
(2m)? hx ’ —7; + 4oy 810 @12 -+ 4o SITL @2/

j=1 0
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where

n = M*e? — 203 {1+ (—1) OOw@

2

As we are interested in local vibrations, e. g. we require M*w? # 2] hence

9 .
also ny 7 4 > aisin? M&l

i-1 2

The integral (14) is, however, with the exception of the constants, Greene’s

function of an ideal two-dimensional monoatomic Jattice and has been relati-
vely well analysed already [4], [9]. It is convergent for n; < 0,75 > 4(as -+ o)
and divergent only on the boundaries. This difficulty can be avoided. As de-
monstrated in [9], Greene’s function can be divided into two parts, where one
is then divergent for n; = 0, 5 > 4(o1 + «z) and the other gets a finite value.
The integral (14) is convergent also for a complex 7.

ANALYSIS OF THE LOCATION OF LOCAL FREQUENCIES

In order to analyse local vibrations let us return again to the right-hand
side of equation (5). It can be expressed also as

w m
?@HSN - MM R&:m_ﬂs\pwem |I NMR&TN HHWNWAQTQM“ Gwv. :mv
i=1 i=1

A simple substitution makes it clear that for K > 0 a plus sign corresponds
to the frequencies w? from the optical branch and a minus sign to the frequen-

Table 1
The boundaries of the frequency bands (Fig. 2a).

| 2 2 2 3
Upper bound , (43 o, 4 o + 209) (45 o + 203, 42 )
i1 i-1 i1 i1
Lower bound 0, 203) (203, 4a3)
O<p<n f=1 r<gz<2r j=1
(--) lattice -
n<ga< T §=2 r<ps<0 §=2
n<ps<w j=1 T<gp<0 =1
(+) lattice _
O<ge<m §=2 n< <2 =2
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cies from the acoustic branch. We shall therefore, in accordance with (5),
define the mass M* in two ways so that the following defining equations may
hold

3
[(M*o?)- — 2w = —Klpr, ¢2, g3) (—) lattice (16)
i=1

3
[M*w?}+ — 2 M o = + Klgi, @2, @3y (+) lattice
i1
For K > 0 the acoustic branch of the diatomic lattice spectrum is transfor-
med into the monoatomic lattice characterized by [M *p2]_ ((—) lattice)
and similarly the optical branch of a diatomic lattice is transformed into
[M*w?)s, 1. e the vibration problem of & diatomic lattice becomes the vibra-
tion problem of two monoatomic lattices (for K < 0'the mutual assignment of
the mono- and diatomic spectrum is just a reverse one).
In deriving equations (6)—(14) we have used a formal expression M*0? —

3
— 2 o, 1. €. We have not specified, if the () or the (—) lattice is chosen.
i

If we compare now equation (13) with (16) we may find that equation (13)
can be assigned to the (—) lattice. From (13) we can see further that by the
simple transformation

gr=g £ J=h2

QM = @3 HWH 27t

the (-+) lattice characterized by the quantities of =12 3) has formally
the same dispersion law as the (—) lattice. Then 4 K(g1, @2, 93) = —Kl{gy,

; = 2o
2R AELE 9.9, 7
(KR BRI K KEL
4Twim R LT85
5 X SHTCERNNNS,
st are et ot tetet: XK

(>

RS ERERELR RIS IR w&.»wmnunnnonoooo‘
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Fig. 2a. Ul — the frequency band of a 2N 2_dimensional (—) lattice for a given value
of the @mln\mgmvmn @a. | — the frequency band of a 2N 2.dimensional (+-) lattice for
a given value of the parameter @a. The band boundaries are in the intervals given by

Table 1.
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@y, @3) and therefore also equations (6)—(14) will be valid for the () lattice
(instead of @i we write ¢;). When determining the local frequencies of the
lattice, described by equation (3), (e. g [M*w?], #+ 2,) these must be simul-
taneously the local frequencies of the () lattices and the (—) lattices. The
same results would have been obtained by using one of the lattices only and
applying then the translation symmetry. In our €ase this procedure would
be less clear than that shown above.

Fig. 2a presents the frequency analysis of the (+) and (—) lattices described

2 .\.“ 1
wf~- 0<% <T
w? - S : THE DOMAIN OF THE
i r» ALOWED FREQUENCIES
> R ] OF LOCALIZED I0OES FOR
w = BRI
O SEREBRRLR CERTAIN 1y
v“&%%%%»o»&o.w'w%»ﬂnow&ho@
) A
vz P Z X
M oA a X, & - Mu:.

Fig. b. The frequency bands of a 2N 2.dimensional diatomic lattice approximated by
the () lattice and the (—) lattice for a given value of the parameter ¢s. They are de-
termined by the frequencies of the optical (ptus sign) and the acoustic (minus sign)

v branch.

mimsa

& 1, wl— o?\? 4 . 12
wf = — o, + + (o1 ©OS @1 - o2 COS @2 4 (—1)yHlegeos @3(2)2

mi me

. s o 1 1
w} = o + 0f = 2(a + az -+ o3) + ——| for my > ma.

Tntroducing the notation X =S a;cos @; (it is summed over ¢ which has the value 1, 2}
we can see that X can get values from the interval (Joi, — o) By a similar method
as in [10], the expressions (15) and (16) can be analysed and we arrive at the conclusion
that to the (—) lattice there correspond acoustic frequencies from the interval (T o, Xi)
and optical frequencies from the interval (X, — Jou)- To the () lattice there corres-
pond optical frequencies from the interval (2 «, N@ and acoustic frequencies from tho
interval (Xi, — 3 ). The quantity X{ depends on g3, § and is defined as Xj =
= 3 oy cos oF = — (—1)i*lag cos @s/2.
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by equation (13) for a given value of the parameter g3, from the interval
(0, 7). The frequencies of the corresponding diatomic lattice are then obtained
by inserting (5) into (13) as can be seen on Fig. 2b. After a similar analysis
for gg from the interval (m, 2m) we arrive at the conclusion that for the calcu-
lation of the local frequencies above and in the optical band of an ideal three-
dimensional lattice the (+) lattice is used, for the local frequencies in the
acoustic band, however, the (—) lattice, provided g is in the interval (0, ).
For @3 from the interval (r, 2w) the situation is just an opposite one. Fig. 3
elucidates the case — the white areas correspond to the possible local frequen-
cies for a given ¢3.

few®
| 20y
2
i, 2oy
2
2la, =
% 2e g
m 25 . Fig. 3. The dependence [M*w?], on the
% (=l) P :
4 T 27 parameter @3. For orientation a rough

dependence is sufficient and therefore
7 -2) the curves can be approximated by
straight lines.

Similarly as in the case of a linear defect in the monoatomic lattice, bands
of local frequencies can be expected. These may be located above and in the
band of the optical vibrations, in the band of the acoustic vibrations and in
the forbidden frequency band of a three-dimensional ideal diatomic lattice
(see Fig. 3). In the last case it is interesting that a possible band of local
frequencies in the forbidden space between the optical and acoustical band
does not exceed the boundary frequencies of an ideal lattice. The matrix
D.y: being a Hermite symmetric one, and the matrix R being frequency-
dependent, we cannot perform a general consideration about the dependence
of the local frequencies on the parameter @3, which characterizes a band, with-
outb a concrete calculation. All that can be said is that, if for a certain w?(ps)
equation (10) is satisfied, then we can get the whole band of local frequencies

202

for all g3 only under the condition stated in Fig. 3. Otherwise only incomplete

or disrupted bands result. . .
Numerical calculation of the local frequencies will be dealt with later.?)
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