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THE SU(6) BOUND-STATE MODEL OF BARYONS AND SUM
RULES FOR ELECTROMAGNETIC MASS DIFFERENCES

PETER LICHARD, Bratislava

Sum rules for electromagnetic mass differences are reviewed on the basis
of a simple SU(6) self-consistent model. Mass formulae of Coleman—Glashow,
Weinberg —Treiman and Katsumori—Faustov are obtained together with
some new ones. The devations from SU(3), SU(6) and quark model sum rules.
are also estimated. ’

1. INTRODUCTION

Electromagnetic mass differences can give us valuable information on the
group or internal structure of hadrons, and they can serve as a first test of
various dynamical models. In the present paper we shall calculate the electro-
magnetic mass differences of baryons and baryon resonances starting from
a simple bound-state model within the framework of the SU(6) symmetry.
In order to enable the comparison of our results with the preceding ones, we
shall make a brief review of previous works. g

Weinberg and Treiman [1] dealt with the electromagnetic corrections:
to isotopic spin conservation. They have shown that masses of particles
belonging to the same isotopic multiplet have to fulfil the relation

M(Ts) = o5 + BT + 7.

This condition is identically satisfied in every iso-multiplet with 7' < 1 but
in the case of the 3/2+ A quadruplet it gives

A= — A = 3(40 — 4¥), (1).

where as usual the symbol of a particle denotes its mass.

The well-known SU(3) formula for electromagnetic mass differences of’
baryons has been derived by Coleman and Glashow [2] under an assumption
equivalent to that of U-spin invariance:
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Equation (2) is in excellent agreement with experimental data,.

Essentially by the same way the relations among the electromagnetic mass
differences in the 3/2+ decuplet have been obtained by Rosen [3].

Postulating the transformation properties of the electromagnetic current
under the SU(6) group, Sakita [4] and Chan and Sarker [5] have derived
the sum rules involving the electromagnetic mass differences of the baryon
octet and decuplet.

The effect of magnetic dipole terms with appropriate transformation pro-
perties have been included into the calculations by Kuo and Yao [6] and
independently by Dol gov and others [7]*.

Within the framework of the tadpole model [8] electromagnetic mass split-
tings of baryons and pseudoscalar mesons have been calculated by Coleman
and Glashow [8], Coleman and Schnitzer [9] and Socolow [10]. The
predictions of this model, apart from the K+ — EK° difference, are in agreement
with experimental data. Nieh [11] proposed a generalization of the tadpole
model and obtained a reasonable value of the kaon difference, too. .

Katsumori [12] calculated the baryon octet and decuplet e?-order electro-
magnetic mass splittings using unified electromagnetic form factors supposed
to be a generalization of the Nishijima and Gell—Mann formula. For the
baryon octet he obtained the Coleman —Glashow formula and for the baryon
decuplet, apart from the Weinberg —Treiman formula, two new ones. These
formulae are less restrictive than the above mentioned group-theoretical
relations (references f31 — [1].

Using the quark model Ishida [13] and Rubinstein [14] derived some
new relations among masses of baryons and baryon resonances, and on the
other hand, have obtained also the analogous relations for pseudoscalar
and vector mesons.

The general mass formulae have been derived by Faustov [15], where
the Fubini—Furlan dispersion relations for the current commutator have
been used. The application of these formulae to the baryon decuplet gives
the same electromagnetic mass sum rules as those obtained previously by
Katsumori [12].

Also the S-matrix perturbation method by Frautschi and Dashen [16]
has been used for the study of electromagnetic mass differences [17], (18],
[19]. It explains some features of this problem, e. g. the octet dominance and
equal-spacing rule for electromagnetic splittings in the 3/2+ decuplet. Using
this method Dashen [20] calculated the nucleon electromagnetic mass shift
in excellent agreement with the experimental value. This result has been

* All group-theoretical sum rules for electromagnetic mass differences can be found
in the interesting paper by Harari [31] together with some critical comments.
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regarded as a great succes of the bootstrap philosophy, but recently detailed
investigations [21], [22] have shown some inaccuracies in Dashen’s original
calculation. The results obtained by the Frautschi-Dashen method depend
to such an extent on so far unknown features of the dynamics of hadrons that
even the sign of Dashen’s result is questionable.

On the basis of a simple potential model Barton [21] has shown that the
neutron —proton mass difference is negative in an SU(2) potential bound-state
model and that it is probably necessary to take into account also higher mass
channels if one wants to remove the above mentioned trouble.

Following this result of Barton, Barton and Dare [23] and Pisdt and the
author [24] calculated the baryon octet and decuplet electromagnetic mass
differences by means of the simple SU(3) bound-state model in qualitative
agreement with experiment. This model is of course not an original one. It
has been used as an illustration in {16] and [20] and more detailed by Barton
[21]. In the papers [25), [26] this method was used to calculate the magnetic
moments of baryons.

In the present paper, as mentioned above, the SU(8) bound state model
analogous to that in reference [24] will be used, in order to obtain sum rules
for electromagnetic mass differences of baryons and 3/2* baryon resonances.

In section 2 an explicit statement of the model is given. The sum rules im-
plied by the present calculation are analyzed in section 3. Finally, in section
4 the deviations from SU(3), SU(6) and quark-model sum rules are estimated.

2. STATEMENT OF MODEL

In the spirit of the self-constistent S-matrix theory we shall regard the
56-plet of baryons (B) as a bound state in the (BM) system, where M
denotes the meson 35-plet. We take the coupling to be given by SU(6) sym-
metry. The reduction coefficients for the decomposition 35 ® 56 are taken
from [27] and [28]. The wave functions for Bg and Bjy may then be written
in the form ,

2 (1. 2 2
¥(Bs) = \ = rwn_\m (PsBs)s + — (PsBo)a +~\ T (VeBoka +

2 1
+ \w! (PgBio)s + ﬁ (V1Bs), (3)

8 C 9 2 1
Y(B) = ﬁ\m (PgBg)10 + ‘w: (PgBig)10 + ﬁ (V8Bio)1o + W (ViBig),



where the subscripts s and & denote the symmetric and antisymetric octet
states, respectively. All states are normalized to unity.
The bound states on the right hand side of equations (3) may be rewritten

by means of SU(3) Clebsch—Gordan coefficients tabulated e. g. in reference
[30]. We obtain, for example:
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where a symbol of the type ntA denotes the relevant bound state.

Computing the mean values of the Hamiltonian* in the states of the type
(4) and calculating the mass differences, we obtain (isotopic spin invariance
of medium strong interaction is assumed):

— 140N + 421 + 84; + 2445 + 8Y, —
= 9K + 10T + 3K* 4 6T — 26W; + 8W, — 6, (5)
N — 285 + 75 4 4T + 24, + 645 + 4Y; + 25+ —
= 12K + 8Ty + 12W,
2827 — 1165 4 16T + 8Y; + 85* —
= 39K + 2271 — 3K* — 6T2 + 26W; + 40W, + 61,
45 + 45 — 44T — 4V, — 45% —
3K + 471 — 3K* — Wy + 4W, — 3W,
4N + 45 — 1364, + 244, + 87, —
9K + 10T + 3K* + 6T — 8Wa — 10W5 — 6W,
4N 4 45 4 84y — 244, + 8Y, —

* The Hamiltonian is defined in the same way as in [24].

where

N
o=
5=

=3

I

-_— = D

7 =
Ay =
A3 =
43 =

9K + 107 + 3K* + 6Ty — 8Wys — 10W5 — 6Ws
2N + 43, + 25 — 4T + 44; + 1245 — 52, + 165% =
= 15K + 4T; 4 9K* + 15W;5 4- 9W,
45 + 45 — 8T + 327, — 1125% —
= 21K — 2T + 15K* — 6T + 8W; + 40W;5 + 24W,
—70%, + 2443 + 4V, —
67 + 60 + 29Ws + 4Ws + 15W;
25, — 4843 + 4Y, =
67 + 60 + 8Wyq + 25Ws 4+ 15We
255 + 2445 — 68Y; =
67 + 60 + 8Wa + 25Ws5 + 15W,,

n — % M\ﬂ = M\l _ Nn_v
-t Yo =2(Y-— Y9 — (Y- — Y4
22 — 20) — (Z- — 21 E* = F%- . %0
5— _ RO n =zt — gt
V3(42) K =K+ — Ko
Ao — A+ Ty = |/3(gm)
A~ — A+ e =ot—¢°
249 — A+) — (4° — A+) K* = K*+ — K*0
SN = <WASOQV

and Wy, Wa, Ws, Wq, W5, Wg are the mean values of the Coulomb energy
operator between one negatively and one positively charged particle in the
A‘Tw.mmv&.? Amuw.wsku Aﬁ\wmwmvpo- A.ﬁmmsvs. Aﬁ\mmwovs md@dmwv ﬂmm@ooamawmaﬁ The
term (4ZX) denotes the second order electromagnetic X9-» A transition mass.
The meaning of symbols (y7) and (Pog) is analogous. We denote the T —

= Y = 0 member of the vector meson octet as @g.

As

a first approximation we supposed that the quantities W for all pairs

of particles belonging to the same SU(3) state are equal. The reason for such
an approximation is the following. After a simple calculation it can be shown
that the electromagnetic mass differences of baryons as N, 21, ..., 41 ete.
are determined mainly by the electromagnetic mass differences of pseudoscalar
and vector mesons &, K, g, K*, and the influence of inaccuracies of the Cou-
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lomb interaction energies is relatively small. Futher, on the basis of Barton’s
result (reference [21]) we neglect the magnetic interaction terms.

The self-consistency conditions (5) represent the set of linear algebraic
equations for computing unknown quantities N, X1,... etc. The quantities

7, K, 0, K* and W occur in these equations as the driving terms. The solution
of equations (5) is the following:

1

N<” IqM@IAI wmw\ﬂlwwwﬂﬂ — 81K* — 907, + 143W; — 92W, + 33Ws +

+ 76W4 -+ 35W, -+ 21Ws) ) (6)

1
2= oy LK+ 14Ty 3K* oy 4 Wy 4 14w, 3W4)

1

M.ml,l Mwﬁomq« +Hom©+wuw3\~+ 44Ws 4 165W; + 56 W, + 175W5 4-

+ 105Wy)

1
= (513K + 3067; 4 27K* _ 18T + 179W, + 412W, + 33W3 —

— 32Wa + 35W5 + 21 W)

~—~
(n i — -
—

1
7 = yﬁl 54K — 727 4 54K* W, — wwg\m+ww:\w+hw\~@+

+ 35W;5 + 21W5) .

1
Ay = MWHINIA,I 486K — 3967; — 162K* — 1807 4- 13W, — 100W, -
+ 3Ws + 236 Wy + 175Ws + 105Ws)
4ds = 34;
) ;
A3 = — HMIAMHQQN -+ 2160 4 92W; + 4W,e + 15W; 4 280, + 875W; +
-+ 525Ws)
7 — 1
1= fwmm.ﬁwwmh -+ 1927 } 180K * + 48T + W; + 68W, - 3W, —
— 64 W, + 175W5 -+ HOMS\&
Yo =4,
8

1
F% = . (351K + 90T + 189K* — 18T + 8Wy + 52W, + 6W3

+ 22W4 4 35005 -+ 210W5).

The experimental data about the electromagnetic mass differences of vector
mesons are at present rather poor. It is also difficult to determine the accurate
values of quantities W. Therefore it is useful to derive from equations (5)
formulae which do not contain the driving terms. This question will be dealt
with in the next section.

3. SUM RULES

Eliminating the driving terms from equations (5) we obtain the following
formulae for the electromagnetic mass splittings:

i & = A &S =gl (a)
3(4% — A+ = A~ — A++ (7h)
A0 — A+ L Y+ Y- L Bt~ _ F%0 (7¢)
T B B AR A gt (7d)
(Z-— 29 + |3 (4Z) — (B~ — 5oy — (- — Yoy — (&m0 _
= ﬂw. [+ — 7% — (K* — K9) + <W§3 + (ot — g9) — (K*+ — K*0y ¢

+ /3 (@o0)1. | (7e)

The relations (7a) and (7b) are the well-known Coleman-Glashow and
Weinberg-Treiman formulae. The formulae (7c) and (7d) are the same as
those obtained previously by Katsumori [12] and Faustov [15]. These
formulae follow from the SU(3) symmetry scheme and quark model relations,
but in addition these models give also more restrictive rules which cannot
be obtained from the present model as exact sum rules. In the next section
equations analogous to those more restrictive formulae will be derived. Cont-
rary to SU(3) and quark model mass formulae these equations contain also
driving terms. In this manner we can show that these formulae are broken
and we shall also indicate the dynamical reasons why they are broken.

In addition to the mass formula (7e) the SU(6) Fermi-Yang model of pseudo-
scalar and vector mesons [32] gives the following relations:

(2 — 29 — (8~ — 59 + |/3(A2)] + 14[(Y- — ¥0) — (5% —



TEN A S — o — (K — KM 4 3@ =0 ()
Ble™ = &) — (B*+ — &%) + /3 (@ug)] = (@ — a0) — (K+ — K9) 4 |/3 ().

The relations (7e) and (7f) are only satisfied simultaneously if

E¥= _ 5% — Y- _ yo (8a)
V310 = @ — =9 - (&
V3 (m) = (B+ — ko) — (2t — o), (8b)

V3 @) = (s — Kooy — g+ — g0,
m_“EE relations (8a) is a unitary symmetry rule ([6], [7]) and the relations
(8b) are SU(3) formulae for second order transition masses [33]
From (7) and (8a) we get: .

A= — A0

I

Y- — yo
A — A+ = M\GIM\.T

A= — A0 = Fx— __ 240

_

These sum rules have been obtained in the unitary symmetry scheme ([6
[7]}) where the transformation properties of charge and magnetic m um
operators were postulated in a particular way. ¢ e
Now, let us return to the discussion of equations (7). They have been obtai
ned after the elimination of driving terms, without making any assumpti -
as regards the magnitude of driving terms occuring in various states HUHM v
make some additional assumptions about the driving terms, we opb.ovnu .
»,E&rmw. sum rules. It has to be stressed that assumptions Mvm this kind o
dynamical and they can be verified by more detailed calculations e
If we, for instance, suppose that .

ﬁ\c” S\H” S\m” S\m and ﬁ\b” S\»Hn :\m” S\«a
we obtain
Hn—p) + 22 — 20 — (5= — 24 = 6 (40 — 4+) — (4o — 4+, (9)
Using the following experimental values [29]:
n—p=1,29MeV
227 =209 — (- — X = 1.79 £ .16) MeV
A® — A+ = (. 45 4- . 85) MeV,

10

we obtain from this new sum rule

A0 — A+ = (1.23 + .14) MeV.

Any comparison with experiment is impossible at present, because the 4° — A+

difference was not measured yet.
If we further assume that also Wy = Wp, we obtain

A — At =n—p (10a)
9(5- — ) — (E-— S =2 (Y- — Y0 — (Y- — Y+)  (10b)

(g

3
(E-— 5 — (- — ) = uw [l — 20) — (K+ — K] + - [K*+ — K40) —

— (K+ — K9] (10¢)

The sum rules (10a) and (10b) can be obtained also by pure group theoretical
methods under specific assumptions about the transformation properties of

the charge operator in the SU(6) group (see references [7] and [34]).

By the same method it is possible to obtain formulae relating the electro-
magnetic mass differences of pseudoscalar and vector mesons. We suppose
that the pseudoscalar mesons (Pg) are composed of (PsVs) states and that
the vector mesons (Vg) are composed of (PsPg) and (V3Vs) states. The other
possible two mesons channels are forbidden by G-parity. The baryon-anti-
baryon states which could be also important are completely neglected.
We hope to return to this rather delicate question later [32]. We shall write

therefore
¥ (Ps) = (PsVs),
¥ (Vs) = sin & (PsPs) + cos 9 (VsVs). (11)
If we suppose that all mean values of the Coulomb energy are equal, we
obtain the following simple relations (independent from the mixing angle
9):
at —nd = ot — o (12a)

K+ — K0 = K*+ — K%, (12b)

These relations are the same as those implied by the quark model [14]. It
is probable that the rules (12a) and (12b) are badly broken, because in this
case there are no other driving terms than Coulomb energies and their ine-
quality may have a great effect.

However, the relation (12a) does not contradict the present experimental
data (nt — 70 =4 .61; ot — g0 = 2 4 3 MeV; reference [29]).
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On the basis of equation (12b) we can rewrite the formula (10¢) in the
following form :

TUET — 5% — (27 — 20)] = (a+ — 20) — (K+ — Ko). (13)
If we substitute the experimental values
7wt — 70 = 4 61 MeV
K+ — K° — — (4.06 + . 12) MeV
into (13), we immediatly obtain the following estimate:
(E-—gF0 (3~ _ 20) =1.25MeV,
whereas the experiment gives (8- — 50) _ (x- _ 2% = (1.6 4 . 2) MeV.

4. VIOLATIONS OF UNITARY SYMMETRY
AND QUARK MODEL SUM RULES

Kuo and Yao [61 and independently Dol gov et al. [7] have considered

second order effects of charge and magnetic moment operators with appro-

m_c.lu_+”3|.% (14a)
=P+ 2L T 250 g- _ o (14b)
A7 — A0 = Y- — yo — g%~ _ gwo (14c)
A0 — A+ = yo _ y+, (14d)

Within the framework of our model, the mass formulae (14a) and (14b) are
satisfied only approximately. Solving the set of equations (5) and manipula-

ting the results in an obvious way, we obtain the sum rules (12a) and (12b)
together with corrections of them.

1
(40 — 4+) — §I§Hraf:§f Wo) (15a)

(= p) (B4 2 250 (g 4% = W:\Fﬁl Wo).  (15b)

Combining the rules (15a) and (9) and using the experimental values listed
above we obtain the estimate ,

Wp— Wo=— (.36 + . 85) MoV.
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If, within the framework of the SU(6) group, the charge owowma.oﬂ is oiwN
taken into account and its transformation properties are postulated in a parti-
cular way, the following sum rule results [4], [5]):

E- - 50 =23-_ 30 (16a)
Our model gives:
(8- — 5 — (2= — 20 = |wl [(r+ — ) — K+ — K0)] +
3 5 b
= % [(K* — K*0) — (K+ — K0 + e (Wp — Wo). (16b)

It can be seen that the relation (16a) is broken above all because o.m the fact
that 7t — 70 and K+ — K° have approximately the same magnitude but

opposite signs. .
w%: an analogous way it is possible to look at the quark model [14], which

gives some new sum rules
2 —2t=Y- - Yt (17a)

e N e (]

]., ]
- — 50 =7,

30— St YO Y+
o p A 2 2 — 230 = F¥— g0,
A0 — A+t 4 FH 4 P 250 = 2 (5 — p).
Inserting into the left hand sides of (17) solution (6) of equations (5) we obtain:

E =) —(Y-—YH= W (@t — 2% — (K+ — KO)] +

3 4 b
t g WK = B3 — (K — KO+ — (Wp — Wo), . (17b)
14

(E- — BO0) — (5% — F%0) = !w[ [(w+ — a%) — (K+ — K9] +
7

3 31
— —_— I .S\ e g 3
g UESE = K20 — (K — KO)] + - (W — W)

(20— 59— (10— T4 = W [+ — 2% — (K* — Ko)] +

13



3 1
+ va [(K*t — K*0) _ (K+ _ chzlfwﬂ. {(Wp — Wy),

(n—p) + (ZF 4 2= — 250) — (8%~ _Fw0) =~ (y, _ Wo)
M H
(40— A%) 4+ (Z+ 4 2= — 25 — 2 (n — ) — Wp — W,

The comparison of our results with those following from the quark model
can be easily seen from Table 1.

Table 1

e S T B

. Present
difference model Experiment

model
49 — A+ 1.3 MeV 1.3 MeV

-_—

Yo __y+ 3.1 MeV 3.1 MoV .
T B e —— o
ke e
K S0 6.5 MeV 3.7 MeV (4.2 + 1.7) MeV
Y- _ yo 4.9 MeV [ 3.7 MeV
o —
% v+ 7.9 MoV 5.0 MeV (2.6 & 1.1) MoV

5. SUMMARY OF RESULTS AND CONCLUSIONS

<<.m shall first list the results following from our simple model. All sum rules
obtained here can be classified into four groups:

. (i) Sum rules which have been obtained in almost all models produced so
ar:

TP+ It — I 4 B 50—,
A= — A+t = 3 (go — 4%,
E¥— %0 _ p~ _ Yo, .

V38 Uz = (5~ 50 — (= __ 50,

The first is the well-known Coleman-Glashow formula, which is in excellent
agreement with experimental data,

(i) Sum rules which are less restrictive than those obtained by group
methods and which are identical with the sum rules derived by Katsumori
[12] and Faustov [13]: . .

A+ — A= —2M0 — ¥+ | Y- _ 230,
40— At 4 P Y- L ER w0

= =

14

(iii) Some new sum rules:
4(n—p)+ 22— 20) — (- -+ = 6 (A0 — A+) — (A9 — A4+¥),
TUE" — E0) — (5= — E0)] = (z* — a) — (K+ — KO)

(iv) Other sum rules, derived by group or quark model methods appear
to be broken in our model. These sum rules can be divided into two parts.
The first part includes sum rules which seem to be only slighty broken:

1
(4% — 4%) — (n — p) H,mis\o — W),

2
(22— 220 —(Y+ 4+ ¥V~ — 2Y0) = ;wl (Wp — W),

1
(n—p) 4+ (Z+ + T- — 230 — (4- — A0) = ~ (Wo —Wo),

(40 — A++) - (Z+ 4+ 2= — 230 — 2 (n — p) = Wp — W,

The second part includes sum rules which are badly broken. We list them
here also with corrections estimated above:

(E7 — 50 — (X~ — 20) = 1,25 MeV
{experimental value: (1.6 4- .2) MeV),

(Z-—=2H — (Y- —YH) =2. mgmmﬁ

(20— XH) — (Y0 — Y+) == 1.2 MeV,

(E- — B0 — (5%~ — E%0) = 2. 5 MeV.

Electromagnetic mass differences can give us valuable information on
the internal structure of fundamental particles. In this way they can also
help us to decide between various models. Unfortunately, the present-day
experimental situation does not permit any definite conclusions regarding
this type. Only the. difference (£~ — 5% — (X~ — X0) has been measured
with sufficient accuracy. According to some results from group theory it
should be equal to zero. Our estimate of this difference is in reasonable agree-
ment with the experimental value.

This agreement (although it may of course be accidental) allows us to believe
that the basic assumptions of our model are essentially correct. This question
can of course only be solved when also other masses have been measured
experimentally with greater accuracy, thus enabling more complete compari-
son with the data and this way enabling us to decide between various models. ,
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Although we have obtained the correct sign and the order of magnitude
of (5= — 20 — (3~ _ 2% mass difference, our result is not within the limits
put by present-day experimental data. This discrepancy is probably due to the
fact that the present model does not take into account the electromagnetic
splittings of masses and coupling constants of exchanged particles (or putting
it in another way, the electromagnetic corrections to the forces responsible
for the binding of particles in a bound state). As has been recently shown
in an interesting paper by J. Harte on the Bethe-Salpeter equation model
of the nucleon as a bound state, these effects may well be important.

The author is indebted to Professor H. J. Lipkin from the Weizmann
Institute of Science for his critical comments oa the previous version of this
paper and to J. Pi§at for valuable discussions,
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