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TRANSIENT ELECTROMAGNETIC FIELD DUE TO A SINGLE
TRAPEZIUM CURRENT PULSE

SILVESTER KRAJCOVIC, Bratislava

Suppose a vertical electric dipole is imbedded in a homogenous, isotropic
and infinite space, characterized by an electric conductivity ¢ and magnetic
permeability 4. Suppose furthermore this dipole produces in the above men-

tioned space a current pulse the shape of which is a non-isosceles trapezoid,
(Fig. 1).
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Fig. 1.

The current trapezoid pulse can be produced as follows:

1. at the moment ¢, = 0 we switch on into the circuit a current pulse the
time character of which is defined by the function #/¢,, where t, is the building-
up period during which the current reaches its maximum value.

2. after a given time-lag interval ¢ — t, we switch on the second current
pulse defined by the function —i[t, the character of which is decreasing one;
consequently the dipole intensity during the following time interval will
be constant.

3. at the next moment ¢ — t, we switch on the third current pulse defined
by the function —ift; in consequence of which the dipole intensity will be —
during the time interval ¢ — i3 — zero.

4. at the moment ¢ - i3 we switch on a current pulse defined by the func-
tion ¢/t3 in consequence of which the current intensity will be in ¢ > #3 all
the time zero.
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We are to determine the time—space distribution of the electromagnetic
field for the above mentioned current pulse, i. e. to derive the theoretical
formulae for its non-zero components as the functions of the time and space
coordinates.

We shall solve this problem in spheri-
cal coordinates with the centre of the
electric dipole located in the origin of
the coordinates, (Fig. 2). First of all using
the Laplace transformation we must de-
termine the image of the current pulse.

x

Fig. 2
First we get:
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for the first (increasing) eurrent pulse. The second {decreasing) pulse is switched
on with a time lag #,. thus for its image we have:
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The third (decreasing) pulse is switched on with a time lag #,. thus we get

for its image: ,
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The last (increasing) pulse has a time lag ¢, and its image is:
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By adding mm.cme.o:m (1), (2), (3), (4) we obtain for the image of the pulse
the shape of which js g non isosceles trapezoid, the formula: ’
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ip) = — — — + — (5)
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.H:w formulae for the images of the 1On-zero components of the electromag-
netic field have however been derived in the papers [1], [2] in the following

Yp)dl 5
er(p) = e (1 + op?) cos @ exp (— apt), (6)
i(p)dl .
ea(p) = trmors (L 9P + o) sin @ exp (—op?) (7)
i(p)dl .
ho(p) = 2 (LT @p?) sin 6 exp(—apty (8)

where: o2 — our?, dl = length of the elementary dipole, i(p) is the image of
the current pulse defined in our case by the equation (5).
Let us denote for short:

dl

ey OO 0 =4, (9)
a

teays S0 0= A4y (10)
dz

o sin @ = 4, (11)

mMM .Q@:moi?w equations (6), (7), (8) with regard to equation (5) and we
obtain:
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Since equations (6a), (7a), (8a) are expressed for Laplace’s transformation
and we shall seek the originals of the baove quoted functions for Carson—
Laplace’s transformation, [4], we have to multiply the above mentioned
equations by the term p, obtaining:

1| eop” e~ ph—ap'/* e~pte—ap'? oe—ap? oe—Ph-ap'/*
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taking the formulae for the two further components of the electromagnetic

field into consideration later.
Let us now determine the originals for the individual terms of equation (6b).

First of all we get:

e—ap' o? o 6.1)
= |0+ | erfe 5= — of %(a, t) ,
? 3 2/s
) @lQE_\n
We cannot find the original for the term —— directly in [4] but for its de-
: 7
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termination we can use the theorem [3]:

i
S . d
J@)(p) = o St — &)g(£)de (12)
In our case we have: ’
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so that we may write:
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We have yet to determine the originals for the term [exp(—apt,)]/p which will
be determined by the theorem:

R () (t<a)
e—ap i ‘
)= Yot —a) > 0 14
_ 1
In our case we have: ¢ = ¢; fip) = N = t so that we may write:
CTUP S by, (> 1) (15)

Analogically, using the relation Jp) = 1/p* = w_\m\ﬂ we obtain:

eipt = 2/t —tjm, > 1)

thus having all the needed originals to be able to write the resulting equation
for the original (6b):
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By comparing equations (6a), (7a), (8a) we find we have yet to determine the
originals of the expressions

P Rw‘%mlﬁﬁa\u RN.%@lQ?‘IQ%—\u Q.w&w@’.ﬁflnﬁu—\u P RN@@I@?|§@-\-

A »* r* »? ts p?

>

to get a complete solution of the problem, i. e. — irrespective of the constants —
to determine the originals of the expressions:
®|Qﬂ._\nm @l@?w @Iﬁnnv e Dt A_N.Uv

We obtain for the first expression directly:

e 0P = orfe —— (7¢)
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whereas we may quote for the next three expressions:

ePh =1 (I>¢)
ePh =1 ({>t,) (7d)
e7Ph = 1 (£t >¢)

Referring to equations (7c) and (7d) we obtain after substituting into the
above mentioned expression:
o? | o o? «
T | Ferfe == 4 1* L 1*¥*) L —|erfo —— 4 IFEEL = Fof)  (Te)
ty 2]/t ty 2)/s
where the asterisks at the ones denote that this expression apllies only for
the time intervals given in equations (7d). Referring now to equations (6a),
(7a), (8a), (6c) we get the rewritten reduced form of the resulting formulae:

er (t) = A.Fy(8), (17)
QQQV = k&@ﬁﬂav |_| kﬁ@ﬁmﬁvn Awwv
ha(t) = AoF(t) (19)

Considering the derived formulae, we see the transient electromagnetic
field will depend on the electrical conductivity of the space in which the elec-
trical dipole is imbedded, partly explicitly — through the expressions A,,
Ao, Agp partly implicitly — through the expression for «. An analogical
assertion applies also for the dependence of the transient process . of the

223



electromagnetic field on the mutual position of the field source and the poing
in which we examine the transient process.

The dependence of the transient process of the electromagnetic fielq on the
shape of the single trapezoid pulse is expressed by the functions Fi(t), Fy)
respectively,
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