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The construction of the best hybrid orbitals of the central atom is an im-
portant problem of Pauling’s theory [1] with respect to the quantum-mecha-
nical characterization of the directed character of covalent bond. These orbi-
tals determine the symmetry of the molecule and the strength of the covalent
bond. According to M. Klessinger and R. McW eeny [2] the significance
of determining the best hybrid orbitals of a centfral atom is the possibility
to construct different group functions for molecules. The construction of
hybrid orbitals is relatively a simple problem in the case of molecules with
a high degree of symmetry.

J. N. Murrell [3] elaborated the semiempirical method of the construction
of the best hybrid orbitals for molecules of the type M-(X,, ..., Xk) based
on the principle of a maximum overlap of hybrid orbitals of the central atom
with all ligand orbitals which take part in creation ¢-bonds. Murrell’s method
of maximum overlap represents a higher degree of the development of Pauling’s
theory of directed bonds because the overlap integrals are a better criterium
for the strength of bonds than the strength of orbitals since in their calculations
we have to take into consideration not only the angular part but also the radial
part of the wave function and the internuclear distance. The stronger the
bond the lower the energy of the molecule. Analogically we get in connection
with assumption that the bond energy is proportional to the overlap, under
the condition of the maximum overlap of the central atom orbital with the
ligand orbitals, the best hybrid orbitals for our molecule. These ideas are the
basis of Murrell’s method which enables us to find the best hybrid orbitals
for nonsymmetrical molecules too.

J. N. Murrell considers molecules of a type MXy in which all ligands are
directly bonded to the central atom. According to J. N. Murrell the best
hybrid orbitals ¥; of the central atom M can be expressed by the form
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where n > kand ¢; (j = 1, 2, ..., n) are linear independent real and orthogonal
atomic orbitals of the central atom. Single ligands are directly bonded to the
central atom M with the help of orbitals @, ..., @ with the assumption that
each ligand X; has only one orbital @; by which it takes part in the ¢-bond.
With respect to the fact that the n 4~ & of the orbitals 0, e O, @1, e,
satisfie the condition

(OO = &y, (2)

{prlpsy = 0rs,
we can consider them as a semiorthogonal set of orbitals [4]. The coefficients
a;; of the matrix A are determined from the condition of the EmﬁBs.B sum
of overlap integrals of the best hybrid orbitals of the central atom with the
ligand orbitals forming o-bonds with the central atom:

S OS =3 3 ay o0, )
i iaia

When we denote by R the overlap matrix between the orbitals ©; and @
and the overlap matrix between ©; and the best hybrid orbitals of the central
atom ¥; by S we can find such a matrix A that

S = AR (4)

in which the trace of the submatrix S constructed from the first k ToWs of
matrix $ is maximal. We take into consideration that the hybrid orbitals
expressed in the form

¥} = Ay (5)
are orthonormal. {¥'} and {¢} are column matrices. .

From the above it follows that the maximum overlap method is bhased on
the assumption according to which the resonance integral between the pair
of atoms 7 and j f; in case of o- and n-interaction is directly proportional to
the overlap integral [5]

Pu(R) = k Sy(R), (6)
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.s.,rmam.\n is a constant of proportionality, S;; is the overlap integral and B
Is an internuclear distance. At the same time it is assumed that the bond

order between the central atom M and ligands X;, -+« Xy i8 the same for ail
bonds. |
,ES. first step in the application of the maximum overlap method is the con-
struction of the orthonormal set of atomic orbitals y; (5 == L, 2, .., n):
n|=8B|g (7)
[ 22 [ on
which has such properties that all nonbonding orbitals yyq, ..., Zn are ortho-

gonal to all bonding ligand orbitals 6, ..., 6,. Hence
Bulzy = 3 {Oulosby = 0, (8)
i

fori=k+1ton andt =1 to k, and also

TMH (bigbi's — dyr) = 0. (9)

The bonding orbitals 715 .. & are orthogonal to all nonbonding orbitals
Xk+1; .. yn and mutually orthogonal. The bonding orbitals are constructed
by the Schmidt process [6]. From % bonding orbitals we construct a square
o<ow:% matrix P of the order k. The process of maximalization of equation
(3) is now equivalent to the process of maximalization of equation

%
tr S H:MH Colx110:> (10)
ij= .

or, in matrix notation,
tr S = tr (CP), (11)
where (P)y = (4,]0;>, CCT = 1.

boooy.&s.m to ﬁsﬁ;o: the matrix S; must be symmetric when the trace of
the matrix S; is maximal. We can determine the matrix € from the equation

C = P (PPT)12, (11a)

where P PT is g symmetric and real matrix.
The best hybrid orbitals are given by
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(¥} = C {3} = CB, {¢}, (12)

where B; is the submatrix formed by the first k rows of B.

HYBRID ORBITALS FOR CIF;

From the results of measurement of infrared and Raman spectra as well as
from the NMR analysis in [7] it follows that the molecule ClF; has in a certain
case a square pyramidal structure of the group Cyy (Fig. 1). The atom of chlori-
ne has the electronic structure 1s22522p63s23p3. Five electrons from the seven

i
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Fig. 1. Symmetry of the molecule CIF;.

of an open shell take part in the o-bond and the other two electrons are on one
nonbonding orbital. We use at least six orbitals of the chlorine atom to describe
the electronic structure of the molecule. The orbitals 3s and 3p are not enough
and therefore we have to use the 3d orbitals of the chlorine atom too. We
find the best hybrid orbitals of the chlorine atom on the basis of the principle
of the maximum overlap method with the orbitals of the fluorine atom. We

use the next set of atomic orbitals:

35 = R, 3d. = |/(5/4) (3 cos20 — 1) By

3p, = _\w cos O Ry 3d. = ﬁ\m sin & cos O cos ¢ Ry

3pr = _\ 3 sin O cos g Ry 3d . = ﬁ\mﬁmm: O cos O sin ¢ Ry
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3py = /3 sin @ sin g R, 8dps_,: = |/(15/4) sin20 cos 2¢ R,

3dzy — #\ ﬁm? sin?@ sin 2¢p R,.

The R-s are normalized radial functions divided by 2(=)ir2.

To simplify the calculations we shall assume that the overlap integrals
between different atomic orbitals and an unspecified ligand orbital are pro-
portional to the projection of the angular part of the orbital on the central
atom on the bond direction. In the calculation of the overlap integrals on this
basis we shall not take into account that the 3s, 3p and 3d atomic orbitals
have different radial wave functions. With this assumption we construct the
following overlap matrix:

@w O, O3 (oA @w
R=s 1 1 i 1 1
P2 _\ 3 0 0 0 0
P 0o |3 0 —)3 0
. Vs =l —i)s )5 s
Doy o s )iz 35 )55
Py 0 0 I's 0 |3
&Hm 0 0 0 0 0
dy, 0 0 0 0 0
dzy 0 0 0 0 0

From the structure of the matrix R it follows that in the molecule ClIF;
and in similar molecules the orbitals s, Dys Gy Py Ao e and p, of the chlorine
atom and the corresponding p orbitals of the fluorine atom take part in the
bonding. These six orbitals of the chlorine atom give five bonding orbitals,
on which there is one electron from the chlorine atom and one from each
fluorine atom. Besides we still have one nonbonding orbital which is occupied
by two electrons of the chlorine atom. Other three orbitals of the chlorine
atom. dz;, dy, and dgy do not take part in the o-bond and are orthogonal
to each fluorine atomic orbital. These orbitals can take part in the =-bonds.

Let us construct one nonbonding orbital ys. There are nn—=k) =6
coefficients to be determined, and (n — k). (n + & -+ 1)/2 equations of the
type (8) and (12).

By solving the system of homogenous equations (12)

@Eu_i_\wgm._r_\wgnﬂoq (12)
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ber + /3 bos — 3/5 bsa + 1]/15 bes == 0,

bor — 3}/5 bos — £)/15 bes + |/3 bes = 0,

bor — /3 bes — 3 /5 bes + 1 /15 bes = 0,

bor — 3 /5 boa — 3)/15 bes — |/3 bes = 0
and the equation (13)

MH+®MM+@MW+@M»+®.M@+@M@H@

for the orbital yg we get

1 — —
=— - d,.). (14)
=37 (V55— V15 p, + 2d,.)

Now we must construct the bonding orbitals x5, x4, x3, x2 and ;1 by alinear
combination of s, p,, P, d,:, dps_, and p,, which are orthogonal to xs.

By the Schmidt process

ax = Ne {oe — > ulowduds (15)
i=k+1
g1 = Neafgp-1 — 2 piloe-17i) (16)
i=k

we construet the following bonding orbitals:

1

= 3 p, —2|/54d,), (17)
ﬁlw<aﬁf+m_\ws V5d3

1 _
X = ﬁ @p: + |15 d.),

x3 = Pz
N\N = mm&mlm\n 3
1= Py.
It now remains to determine the linear combination of y1, ..., 74 and g5

which has the maximum overlap with the ligand orbitals. The o<m1.m% between
bonding orbitals y; and ligand orbitals is represented by the matrix P:
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6y &2} 63 Oy O
P=n[o 0 Vs 0 —s (18)
22 10 1)/15 —tJ5 i)is )i
2 | 0 E 0 —)/s 0
3 5]/3  5]/3 3 3
R O A VY VY VR VE)
19 219 2§19 2} 19 2o 19
T2 12 12 12 2
Ve Jia J11a 114 J1e
The matrix C is
C = .000 .000 .000 850 526 | (19)
000 .500 707 —0.263 425 |
707 —0.500 000  —0.263  .425
.000 500 —0.707  —0.263 425
[ —0.707  —0.500 000  —0.263 425

The matrix of the overlap i i
3 P integrals between the best hybrid orbit ,
orbitals of fluorine atom is ) rhtals and the

S=CP— 2957 —0.254  —0.25¢  —0.254  —0.254 ] (20)
—0.254 2.932  —0.229 483 —0.229 |
—0.254  —0.229 2,932  -—0.229 483
—0.254 483 - 0.229 2.932 - .229
| —0.254  —0.229—283 _0.229 2.932

The trace of the matrix S, is 14.686. The best hybrid orbitals are obtained from

(17) and the expression for

P-1 (PPT)L2:

P] =[.468 .604 .000 645 .000 000)[s ) (21)
¥, 378 .052 707 —0.323 .500 000 | | p. i
¥y 378 052 000 —0.323 —0.500 07| | pe
i 378 .052 —0.707 —0.323 500 000 | d.
(¥s] |.378 .052 000 —0.323 —0.500 —0.707] | d., »

pﬁe

THE GOLOBIEWSKI METHOD

A simple . method for constructing ¥y’s was developed by P. G. Lykos
and T. L. Gilbert [8], and independently and differently by A. Golobiewski
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{9]. In the Golobiewski method the matrix RT, which has & rows and # columns
is denoted by S:

Orlpiy....... .. CA™S (22)

The matrix SST (of the order & < #) is symmetric and real and can be diagona-
lized by an orthogonal matrix U, thus

{ A@n_.epv ......... {Oklpn>

SST = UT D(ay, ..., )V, (23)

where all o;’s are real and positive. For a given geometrical configuration
and a given set of orbitals ¢1, ..., g, the maximum possible value of the
trace of S; can be calculated from the formula

k
(67 S))max = 2, %', (24)

i=1

where all «}®-s have to be taken as positive.
Provided that all o;-s are different from zero, the matrix elements ay of
the matrix A can be calculated with the use of the following explicit formula:

Caar. oo, am] = UT D(;'?, ..., ez'?)US, (25)

where all square roots «}/* have to be taken with a positive sign.

We find the best hybrid orbitals for the molecule CIF; by the Golobiewski
simplified method.

The symmetric and real SS7 matrix is equal to

SST = 9.000 —1.500 —1.500 —1.500 —1.500 (26)
—1.500 9.000 —1.500 3.000 —1.500
—1.500 —1.500 9.000 —1.500 3.000
—1.500 3.000 —1.500 9.000 —1.500
—1.500 —1.500 3.000 —1.500 9.000
and
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(S54)712 = | 348 030 .030 030 030 | (27)

.030 .356 023 —0.052 .023

030 .023 .356 .023 —0.052

.030 —0.053 .023 .356 .023

.030 .023 —0.052 .023 .356

The matrix of the best linear transformation coefficients

A =1 468 .603 .000 .645 -000 -000 ] (28)

.378 052 707 —0.323 500 .000

.378 .052 .000 —0.323 —0.500 707

.378 .052 —0.707 —0.323 .500 .000

378 .052 .000 —0.323 —0.500 —0.707

method. According to Golebiewski the ,,total bond strenght* is determined
through eigenvalues ¢; of the matrix (SST)12 in the form of {10}

B = tr(St)max = tr(SST)/2 — tr (29)

where e is a diagonal matrix whose diagonal elements are real and positive,
For the molecule CIFs e;; — 2.957 and eg = ggz — €14 = e55 = 2.932. The
diagonal elements of & (29) have been chosen positive o ensure the maximum
value of the trace tr e. With a negative value for one (or more) of these elements
we would get other extrem values of K. Tt follows that the €ii values should be
related to the orbital energies, and that choosing a negative sign for one or
more e;-values in eq. A = UT e-1 US we would obtain the best linear combi-
nation ¥;, j = L, 2, ...,k for the excited states [10]. It can be seen from the
result that the four values er (4 =2, 3, 4, and 5) belonging to the overlap
of the orbitals of the fluorine atoms (lying in the corners of a square pyramid)
with the orbitals of the central atom are equal, while e11 belonging to the bond
which is perpendicular to the four bonds lyin ¢ in one plane is stronger as regards
energy. The fact that the er1 Cl-F bond is shorter than the other four [7]
suggests that the overlap between ¥: and @ is to be preferred. Similar results
were found by J. N. Murrel] in the case of the molecule CIF; [3].
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