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ON A CLASS OF RATIONAL FUNCTIONS
CONNECTED WITH THE DYNAMIC INTERPRETATION
OF CDD POLES

JAN WEISS, Bratislava
INTRODUCTION

As it is well known elementary particles physics so far has been lacking
an experimental proof for the existence of CDD (Castillejo, Dalitz, Dyson
{1]) poles. Nevertheless, especially the problem of the ambiguity of partial
wave dispersion relations, connected with the problem of CDD poles, belongs
in relativistic S-matrix theory to one of the interesting topics. This is under-
standable, because the acceptance of the CDD poles means the admission of
a new kind of independent particles and the break-down of one of the basic
principles of strong interaction physics (the maximal analyticity of the second
degree) founded in bootstrap dynamics.

The CDD ambiguity analogy can be also established in the non-relaticistic
potential theory. In paper [2] this analogy is constructed within the frame-
work of the non-standard inverse problem. As the non-relativistic analogy
of the CDD ambiguity is considered the ambiguity in the determination of
potentials for the given positions of the CDD poles in the complex momentum
plane k. Results of [2] show that the CDD poles exert a'characteristic influence
on the interaction of elementary particles. They prove the fact that the CDD
poles affect chiefly at relatively large distances, where the Yukawa short-range
forces are already negligible. This circumstance appears in the behaviour of
the potential characterizing the corresponding interaction of particles in
a such way that in the presence of the CDD poles the asymptotics of the po-
tential for 7 - oo is already not exponential, but rational. In the present
paper we want to discuss again the rational behaviour of the long-range part
of the potential with a different intention than in [2], of course.

We shall deal with the exact solution of the system of non-linear differential
equations from paper [2] (system (22)), by which the connection of the CDD
poles with the long-range potential asymptotics was directly investigated.
Whereas in {2] it was sufficient to solve the system (22) approximately for
finding the corresponding asymptotics, it can be shown that the exact solution
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of the system brings also a new notion of a mathematical character for the
physical properties of the potentials. We are thinking of the fact that the ra-
tionality of the behaviour of the long-range potential part is based on a certain
class of rational functions which are exact solutions of the non-linear system
(22) from [2]. Apart from being dependent on the relative distance of interacting
particles these functions depend also on the integration constants and, as it
follows from [2], the above-mentioned constants have the meaning of para-
meters of the CDD poles. As it will be shown later, the number of the integra-
tion constants increases proportionally to the number of the CDD poles in the
origin of the complex plane k, but the degree of the denominator in the rational
function connected with the potential does not increase proportionally. The
rule determining the increase of the highest power of the denominator is
expressed by the following formula: N(N + 1)/2, where N is the number of
the CDD poles. However, we are sorry to say that just this property, i. e.
the rapid rise of the degree of the polynomial in the denominator of the cor-
responding rational function excludes on principle the possibility to show
correctly how the presence of CDD poles secures the priority of the rational
functions with respect to the transcendental functions in the solutions of
system (22). On the other hand, as we shall see in the particular cases of solving
system (22), there exists a certain property, common to all functions of the
class, which enables to gain by means of an algebraic way the sought solution
for the function associated with the potential in the case of the arbitrary
number of the CDD poles.

The brief contents of the work: In Section 2 we shall quote preliminaries
of our problem. The system from paper [2] will be solved for N = 1, 2, 3 and
4 in Section 3. Section 4 contains the treatment by which one can extend the
class of the considered rational functions. Conclusions are in Section 5.

PRELIMINARIES

The starting-point of our considerations is the system of non-linear differential
equations (system (22) from [2])

Bir) — 263(r) = —2B;(1) Bulr)

Balr) — 2B4(r) = —2f,(r) Ba(r),

Ba(r) — 2B4(r) = —2p,(r) Ba(r),

mm._?vlwmxi = —2f,(r) fia(r),
Bi(r) = ——2By(r) Bs(r).  j-12..m
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In system (1) f;(r) are functions characterizing the pole terms of the Jost
solution in the origin of the complex momentum plane &, r is the relative distan-
ce of two interacting particles and N is the number of the CDD poles at the
point k = 0.1)

The functions gj(r) must satisfy the boundary conditions

lim fy(r) = 0. (2)

Tor a given N between the functions By(r) it is the function fi(r) which has
the physical importance for its connection with the long-range potential
u(r). The corresponding relation is

w(r) = —2p,(r). (3)

1t will therefore be the aim of our calculations to find the function fi(r) for
an arbitrary number of the CDD poles.

EXACT SOLUTION

The solution of (1) cannot be directly found for an arbitrary number of the
CDD poles. The explanation for this is to be found in a fact that the solutions
for a given N are associated with the solutions of the separate foregoing cases
(from 1 into N — 1). Let us solve system (1) for the particular cases with
a succesively increasing N.%)

AL N=1
System (1) is reduced to one simple differential equation of the second order
Bi(r) = —2p;(r) pulr), (4)
which can be easily integrated. We have
B1 + B; = const.

One can put the integration constant in (5) equal to zero on account of the

condition
lim Si(r) = 0.
r—>00

1y Two functions f;(r) in the plane k correspond to one CDD pole in the complex energy
plane E. For this reason in [2] the index j gains the values 1, 2, ..., 2s, where ¢ is the
number of the CDD poles in the plane E.

2} In other connections and by other methods in [3] and [4] a more general type of
equations than one (1) was solved for § = 1 and 2.
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The Bernoulli equation

Fithi=0
which arises thus, has the solution
1
Ba(r) = PR (6)

where c; is an integration constant and r £ —c;. Using the substitution 2,(r) =
= r + c and assuming that z;(r) > 0, we can express (6) in the form

u(r) = [n z1(r)]".
B. N=2

In this case system (1) has the form

Bi(r) — 2B5(r) = —2B,(r)fr(r), (M
Ba(r) = —2,(r)B(r) (8)

and the functions fi(r) and fa(r) fulfill the boundary conditions
lim fa(r) = lim fa(r) = 0. (9)

Equation (7) can be integrated and the corresponding integration constant
put to zero with regard to (9). We obtain the equation

o Bi—2p =0 (10)

Let us multiply (7) by the function B2, (8) by the function 8, and subtract at
last the mentioned equations (the second from the first). We get the equation

\ww\mw - mmmu - w\wmmm = 0.

The first integral of this equation, in which according to (9) the integration
constant should be equal to zero, is

Brfs — Bapy — 3 = 0,
or after a simple arrangement
B — (In o) By = pe, (11)
where fia(r) > 0. Equation (11) has the mo:o,:m:m solution
pr = B[ [ fae~Intedy L ¢,
which leads to the relation
Pr = Balr + c1) (12)
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with the arbitrary constant ¢;. Eliminating gz from (10) and (12) we get the

Bernoulli equation
2

P — 5 == 0. 1
P ».;TSN?..T%- 0 (13)
By substituting 1 = 1/y, where y # 0, (13) may be rewritten in the form
, 2
Yt r="1

from where, supposing that r 4 ¢; > 0, it follows
y = @IM_EITE%.‘,Gmﬂuc.+9vﬁﬁ -+ QMH

and after integration
r 4+ ¢ C2
R (r + e’

where ¢; is the arbitrary constant.
For the functions $; and f2 we thus have

. 3(r + ¢1)?
= (r + ¢1)3 + 3¢z ’ (14)
Balr) = —rt ) (15)

(r 4+ c1)? + 3¢ ’

In what follows we shail write instead of » 4 ¢; simply r. We are justified
to do this, because system (1) is invariant under the transformation r — r 4
—+ ¢, where ¢ is constant.

If we write z2(r) = 3 4- 3¢z in the denominator of (14) and (15) and sup-
posing that 2:(r) > 0, we have

Bi(r) = l|www[ = [In 22(r)]’, : (16)
73 + 3¢
Palr) = 2 {In ze(r)]". (17)
B +3c r
C. N=3
For three functions of (1) we have now the following equations
Br(r) — 2B,(r) = —2B,(r)pu(r), (18)
Balr) — 2By(r) = —2B,(r)fa(r), (19)
Ba(r) = —2,(r)Bs(r) (20)



and the boundary conditions

lim f1(r) = lim Ba(r) = Lim f3(r) = 0. (21)
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The first integral of the equation (18) is

Br— 22 + i = 0, (22)
where according to (21) the integration constant is taken to be zero.
Multiplying equation (19) by fs and equation (20) by fz, subtracting the
second equation from the first and finally integrating the thus obtained equa-
tion (the integration constant being zero again), we get

mmmw - mmmw - mw =0,
or
Bz — (In B3)' 2 = s, (23)
where fig(r) > 0. This is the same type of equation as equation {11). That is
why its solution is
B2 = fa(r + c1) = rfs. (24)

Next, let us multiply (18) by f2 and (19) by 81, subtract mutually the multi-
plied equations and add equation (20) to the resulting equation. We have

Bifs — Baby ~— 28365 + 2(Bsy + FiBs) + B5 = 0. (25)

Equation (25) can be integrated. The conditions (21) will be useful also the
third time for determining the physical meaning of the integration constant.
We can easily convince ourselves that after the integration and some little
arrangement we get from (25)

R E \ Bs
B+ | —npay | fr+ " —pr =0,
r i
where f$s5(r) > 0. Hence
B} B\ -
p1 = e 2inr+ing. o — ——Je2lor=Ind:dyr L ¢y, (26)
B2
The integration in (26), using (24), gives
Ba (13 1
FHMIM+S +»°.|. . (27)

Insert for fa(r) into (22) the expression from (27). In such a way we obtain
the Riccati differential equation for the function §(r)
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5 372 P P 3r g (28)
— 22— h+H+2— =0 2
Ay 73 4+ 3c2 ' ! 73 4+ 3co

In the relations (27) and (28) cg is an arbitrary constant, for which 3 £ —3cz
must fulfilled. The particular integral of the equation (28) is

1
= (29)
We can transform equation (28) by

Pr=0 -+ (30)

into the Bernoulli equation for the function ¢

2 672
¢+ T 1 30 g+ ¢?=0. (31)
If we substitue in (31)
1

= @ #0 (32)

it is necessary to solve the equation

2 6r2
u\\] ﬂ.‘l *.w||*|wwh 9\” _.- Awwv
2
When 3 + 3¢z > 0, the solution of (33) is
y = e2lnr—Ing*+3e)] { [ e—2Mor-In(r*+3el dr + cg}, , (34)

where c¢3 is the arbitrary constant. The integration in (34) yields

72 5 9c3
= |+ Begr? — — + ). (35)
(3 +-3co)2 \ 5 r
On the basis of (35), (32), (30) and (29) we can easily find the expression for
the sought function

Y

(r3 -+ 3cg)? 1

2 75 9cs
— -+ e 4+ 3 —
5

1
pur) = B —+ ) (36)

r

or in the adjusted form

6r5 - 45cor? + 5c3
Ba(r) = = (37)
76 + 15¢c9r3 + 5ezr — 45¢;
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We can again write the rational function (37) as follows
Bi(r) = [In z5(r)]’, (38)

where the polynomial, characterizing the case N = 3, is
z3(r) = 18 + 3. 5car3 4 Scgr — 32 . 5l (39)

and with regard to (38) one must require z3(r) > 0.

The functions flz(r) and fs(r) can now be calculated from formulae (24)
(27) and the known function fi(r). u

D N=4
Finally we start from the following system
Bi(r) — 2B3(r) = —2B,(r)fa(r), (40)
Balr) — 2By(r) = —28(r)Ba(r), (41)
Bs(r) — 2B4(r) = —28,(r)Ba(r), (42)
Balr) = —2B,(")Ba(r), (43)
in which the boundary conditions
lim fy(r) = lim fa(r) = lim fa(r) = lim fs(r) = 0 (44)

hold for its functions.
The integrated equation (40) with zero integration constant (due to (44))
has again the form

By —2p2 + B = 0. (45)

The m@Bm.c@mSﬁozm we have made in the two last equations of the above
cases analogically give for equations (42) and (43) the relation between f3 and g,

Ps = rfa. (46)

In order to find the relation between these functions and the functions b
and fz, let us multiply (41) by s, subtract from this equation the equation
(42) multiplied by f2, multiply then the resulting equation by -—1 and add
to the equation which we obtain by multiplying (40) by g4 and (43) by —p:
and by their mutual addition. The result of this procedure is )

mw\m_* - %M\wu _ Namm» + mwmmv + mmum - \mm\ww -+ w\mmmw = 0. quv

Let us now integrate the equation (47). Using the conditions of (44) for the
determination of the integration constant and after some arranging we obtain

. B Bs Ps 5
Bi— = f1— 2B+ > o — ——f + — = 0.
Ba e PR R &
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For p1 this implies

h ,

mhﬁﬁv > O»

where we have used (46) and written the integration constant as — cz. The
integral in (49) can be computed. The integration leads to the next relation
between the functions of our system

EH == elnf

Q.w
fr = rfa oy fa — cofs. (60)

Take now the following combinations of the equations (40—43): multiply
(40) by Bz, (41) by —p1, sum up the obtained equations and add (42) to the
resulting equation. We get

BBy — BBy — 26382 + 2(Bsby + Bifs) + By — 2B = 0. (51)

The first integral of this equation is

BBy — Bofy — B3 + 2615 + B3 — 2Ba =0 (52)

with the zero integration constant on account of (44). When we exclude
pr and B4 from (52) according to (50) and (46), we obtain the differential
equation of the first order for the function fs

, 73 Ca 4 Cc2
Bs|l—\5 T )|+ P ,wﬁJrﬁN P +
. ».w.TS , 2 aww 2c2 55
7 ol Ly Bl i s (53)
The equation (53) may be rewritten to the from
[ s — %+ 3B |, 2] 23 - 6oy .
fs— | |In + =} fs= B3, (54)
| r 7] 3r — (r3 4 3¢2)f2
or by m:rem.esa:m A == 1/f3 it may be transformed to the equation
([ 3r— (B3 + 3c2)fz) | 2] 23 1 6oy
A" EL + (4= (55)
] r L 3r — (r3 4 3c2)fe
We can write later the solution of (55) in the following way
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A= o%:E%gi —(2r3 4 6cg) .L_: B vty +w__:_g 1
r——
3r — (r3 + 3ca)p 3 %j » (56)

where the integration constant is indicated as —1/3c3 and 3r— (13 + 3¢,)
> 0. After computing the integral in (56) there follows for 3 the result

372 — (1% + 3cor)fe

fe >

g == — ——

9

&

1
—7% 4 Bear? + —¢3
5 3

(57)

mﬂaos the relations (57) and (50) we are able to determine $ as a function
o 1

6
—(3r* + 9car) 4 mﬁm + 9cor? 4 c3) By
P = 1 : (58)

!m.% + 3cor® 4 cgr — 9¢3

Hbmmuﬁcm (58) into (45), we obtain finall 5 : .
’ the R t i
functio ) y lccatl equation only for the

g 9 675 + 45¢9r2 1 Begy
o

; 1574 - 45¢0r
B+ B3+ 2 =
78+ 15cor3 + Begr — 45¢3 At 7 - 15cor% + Begr — 4502 0

(59)

A
ﬁm O mHO H—W T C,E:M @@:m.&:: % wa v\ (&) .:—®
(( e &H mk‘vw&ﬂ: m GMHG € g&.&~0- @@V int & eI il ~u %.

Br= ¢ -+ BT, (60)

o ¥ s . -
w rowm By is a @.@wﬁoﬁ_mn integral of equation (59). It can be shown that the
particular solution of the Riceati equation (59) is

3r2
73 - 3oy

The corresponding Bernoulli equation has the form

BT (61)

oo [T 6 4 4Bew® 4 5eg

73 - 3oz 8 4 15093 4 Bogr — 45¢2

¢+@=0  (62)
From the equation, into which (62) is transformed by substituting

1
v\ = ‘u H O
Pl (63)
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the solution for y follows:

(3 + 3co)2 (8 - 150973 4 Scgr — 45¢3)2
y = 59 " Qq.lTnb .Amﬁv
{78 4 15car3 + begr — 45¢5)°| | (r3 + 3c¢2)?

Here c; is the arbitrary constant and #8 - 15¢er3 + Segr — 45¢5 > 0. The
integral in (54) has a remarkable property: all transcendental functions, which
arise at its computation, cancel out. Thus the result is again the rational

function
3r2 (8 + 150203 - Begr — 45¢3)° [ o7
Bi(r) = 4 — + 6eart - Segr? — 18¢or —
3 + 3eo (3 + 3c2)? 7
25 1 9¢a(10c3r2 — 81cr) -1
— |0w h = I_l C4 H Amwv
3 "3+ 3¢ 73 4 3¢z

or in the simpler form
107° -+ 315¢or8 4 175¢c3r4 + 21ear2 — 1050cscar - 472503
175

710 | 450917 - 35cgr3 + Tear3 — 525csc5r2 4 ﬁwuawﬁ l.iwlow -+ 21cacy

Bulr) =

(66)

The result (66) offers once more the denotation in the form of the logarithmi-
cal derivation of the polynomial characterizing the case N = 4

pa(r) = [In z4(7)]’, (67)

where

z4(r) = 110 + 32 5egr? 4 5. Teard - Tegr® — 3. 52 . Teacyr® 4

5.7
4 33.52. Tcdr — 5 cs - 3. Tesca (68)
and z4(r) > 0. The remaining three functions can be determined by meaus
of (58), (57), (46) and the known funection fi(r).

EXTENSION OF THE CLASS

Particular cases of solving system (1), which have been dealt with in section
3, lead to the conclusion that the functions fi(r) form a certain class of the
rational functions with the following properties:

a) Every function f7(r) can be expressed as the logarithmical derivative
of a certain polynomial
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Tr) = 5 Mzl (69)

where N =1, 2, 3, ... and zn(r) > 0.
b) The functions py'(r) are the solutions of the Riceati differential equation
Zy-4(r) 2y-1(r)

(BY(r) —2 =0 53 + (Y +

2y (r) 0. (70)

NZIH?.V o

c) From the properties a) and b) the
re follows the reccurent i
between the polynomial 2y-1(r) and zy(r) et eduation

aN-1(r)ey(r) — 22y, (r)2y(7) + 2% (r)en(r) = 0. (1)

d) The polynomial zy(r) may be determined from the creation relation

, N ") 5 even j

an(r) = c— H 2 —1) ) o e for an even N
al, 2j-2(r) / odd j (™

I=3 for an odd N,

h = =
where zp(r} = 1, zi(r) = r and ¢, cs, .-, ¢y are the arbitrary constants
However, the constants of the polynomials z !

] 2, 23, ..., 2v-2 have to be e
to the constants g, csg, .. ; -

-» ¢v—2 of the polynomial zy. As re 3
. 85 - . : gards the constant
¢11n z; we do not write it, according to our argeement (see section 3, B).

Between th 1 i i
Srpantionss e polynomials zx(r), zy_y(r) and zn-2(r) there exists the following

oy . an-a(r)\?
zn(r) = 2y-a(r) | (2N — 1) || ——] dr + cnf- (73)
NZINAQV
e) The degree of the zy(r)-th polynomial is defined by the rule

Ez+:
m=-————-—-,
2

s,:mwwo m is the highest power of the polynomial.

M.ro relation (72) gives thus the structure of the polynomials by means of
cﬁdor one defines the functions g¥ with a direct physical meaning. As expr .
mES.QMV shows, the polynomials of particular cases are bound e.o the ?%m-
nomials of .oaHmH and other cases starting from z, for an even N and 2y m%% MM
MM& N. H:.Hm oﬁ.vszmoa.os _omné.mos the polynomials is realized on the basis of

e subordination of integration constants: of (N — 1) arbitrary integration
constants, occuring in the polynomial zn(r), one requires for the oommgsam

of structural polynomails 21, ..., zy_s to be equal to the constants cq, ..., cy_s.
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It remians an unsolved problem, connected with an interesting feature of
the representation of (72), namely that the integral of the squared ratio of
a following and foregoing polynomial yields the rational function. Surveying
the calculations of the functions A¥(r) from Section 3, we see that the first
three cases do not explain this problem, because in them the transcendental
functions do not occur yet at the integration. The case of N = 4, in which the
transcendental functions already appear, but finally cancel out, can lead at
most to the assumption that real roots of the polynomial zy_o(r) play a decisive
role at the vanishing of the transcendental terms. If we want to get information
from the case of N = 5, we find out that to be able to do it, we must know the
roots of the polynomial of the sixth degree. The increase of the polynomial
degree (property e)) is too quick and, as we see, it puts before us basic difficul-
ties at the investigation of factors affecting the cancellation of transcendental
terms in the functions B3(r).

The expression of the zy(r)-th polynomial in the form (73) satisfies the
recurrent equation (71), as it can be easily verified, however, it cannot be
used for the above reasons for the polynomials with high degrees. In order to
be able to extend the mentioned class of rational functions g7 (r), in spite of
this, we employ in a suitable way equation (71) which is a consequence of the
fundamental properties of the functions B¥(r). If we know the polynomial
zy-1(r), equation (71) enables us to calculate zy(r) and with the help of (69)
also the function B (7).

Let us assume thus the polynomials zy-1(r) and zx(r) in the following form

N(N-1)2

&»%IHQ.V == w.w k&u.i.u AQ%V

zn(r) = > By,
: i=0
where A; are known coefficients and By are the ones to be determined. Insert-
ing (73) into (71) we obtain a system of algebraic equations for the unknown
coefficients B;

i 2

> > p— Du(4sBy + AuBy) —2(v + Yy — DApuB,]=0. (75)

For the caleulation of the coefficients By concerning the given NV it is sufficient
to consider the first 1 4+ N(N =+ 1)/2 equations from the infinite number of
the equations of (75). It may be shown namely, as it might have been even
expected, that the constants B; in (74) are identically equal to zero at powers
higher than N(N + 1)/2. From (75) it follows that in every polynomial one
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must arbitrarily choose two constants: in zs Bs and By, in z3 Bs and By, in
z3 Big and Bs, in z5 Bis and Bs ete. If we choose these constants so that the
first pair is put equal to 1 and the second pair 3¢z, 5cs, Tes, 9cs, respectively,
etc., we get the polynomials of our particular cases. Since system (75) helps
to construct the polynomials zn(r), we can regard it as a convenient means
to gain additional information on system (1). We can thus extend by it the

class of the functions g (r).

From the applications of (75) let us quote at least the result obtained for
the polynomial z5(r):
z5(r) =115 + 3.5 . Tearl2 + 4.5 . Tegrl® + 32, 52, 7ci® + 7. 9egrd —
—32. 5% Teacar” + 9csr8 + 3. T2(C — 2. 32acq )5 +
+ 33,53 T3yt + (—35.5%. T2%5 — 3. 5. Tacs + 3.5 . oacs)rd —

32.72
—32.5.72Ccer? +- .I’.mlom + 5. 9cgeslr +
3.7 gy 7202 A
2t —32.5. 9, (76)
5 C3 5c3
where C = (32c¢4 — 5%3).
CONCLUSION

As the cases 4, B, C and D in Section 3 show, the solutions of system (1)
are rational functions. It was our task to find from the funections Bi(r) the
function fi(r) connected with the potential of long-range forces for the arbitra-
ry number of the CDD poles. However, if we want to investigate the proper
long-range asymptotics of the potential it is suffecient to solve the system (1)
approximately (see [2]). We can convince ourselves that the solutions obtained
in this paper coincide in the limit r - co with the solutions from [2]. For
a sufficiently large r we can also obtain the solutions of more general equations
occuring in papers [3] and [4].

The exact solutions have some interesting properties (see Section 4). The
rationality of the solutions is evident in the logarithmical derivative of the
polynomials zy(r). The solutions of individual cases are mutually connected,
which is obvious from the iterative connection of the polynomials of particular
cases according to (72). Between the properties of the polynomials one property
is particularly remarkable (the property expressed by (73)): the product of
a given polynomial and the integral of the squared ratio of the foregoing and
given polynomial is again a polynomial. The determination of a criterion ex-
plaining this property is associated with the difficulty which is the rapid rise
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of the polynomial degree (Section 4, property e)). H_SH@.?B we can only assume
that the following requirement plays here a role: all integration no:mﬁ:dm —
with the exception of two — must coincide é:& the oo:mnp:ﬁm. of nrw polyno-
mials taking part in the formation of the mentioned polynomial. This depen-
dence of the constants of structural polynomials on the ao:mdwﬁnm of the oosﬂ-
sidered polynomial affects certainly the roots of the woqsoEE_m and trough
them also the cancellation of the transcendental ?zoﬁo.cm. . ,
In spite of the difficulty we have with the integration @ooowm._sm to va
for the polynomials with high degrees, we are able, due to equation chvdro
extend the system of our polynomials and with regard to .33 .ﬁEm also po
solutions pi(r) for the arbitrary finite number of ﬂwo equations in m%mnoBmAFY
namely on the basis of an algebraic approach (Section 4). In the m%m.ao_E of t .M
algebraic equations (75) for the coefficients of the mo:m.rn polynomia mmzs i
is always necessary to choose the coefficients of the Emr.omn power o ﬁmr e.
N(N 4+ 1)/2 and of the power (N — 1}(N — 2)/2. To obtain the system oH our
polynomials the first coefficient has to be chosen 1, izw(mooosm one (2N lm VMZ
I wish to express my sincere thanks o Dr. M. Petras for his interest and dis-
cussions regarding the whole complex of problems of the CDD poles.
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