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TRANSPORT THEORY FOR STRONG ELECTRIC FIELDS

JAN FOLTIN, Bratislava

A new sm%mo@nr to transport theory for strong electric fields is presented.
The model used in the standard transport theory is shown to be incapable
of ensuring the establishment of the steady current in strong. electric fields.
The interaction of the system with the environment is suggested to maintain
the steady state. Taking this interaction into account the direct expression.
for the distribution function of electrons interacting with the lattice vibrations
and exposed to the uniform strong electric field is derived.

INTRODUCTION

In transport theory many authors (e. g. [1—3)) consider the problem of
strong electric fields identical with the problem of solving the Boltzmann
equation to higher approximations in the magnitude of the applied field.
Their treatme.t is based on the assumption of the validity of the Boltzmann
equation even for strong fields but the substantiation of this assumption is
justified only by the fact that the theory gives reasonable results [2]. The
validity of the Boltzmann equation is expected even in those papers (e. g.
[4—7]) which assume that in strong electric fields electrons are in equilibrium
with the momentum shifted in the direction of the applied field and that the
temperature differs from that of the lattice due to the prevalence of the energy
exchange between electrons over the exchange between the electron and the
lattice vibrations. In these papers the electron temperature is determined
from the Boltzmann equation in which electron-electron collisions are included.

Since papers deriving the Boltzmann equation from the quantum-mecha-
nical standpoint (e. g. [8—10]) insure its validity to the first order in the-
magnitude of the applied field the question arises what entitles many authors
to use it in case of a strong electric field. This problem together with the
derivation of the direct expression for the distribution function in strong
electric fields are the objects of the Presented paper, in which under the term
»Strong field we mean an electric field of such an intensity which permits:
the description in the effective mass approximation but leads to the appearance.
of non-linear terms in the expression for current density.



For the sake of simplicity electron-electron interaction will be omitted in
our consideration. Though this makes it impossible to analyze the model
used in the papers [4—7], we can analyze the model in which the distribution
function is not substantially effected by the electron-electron collisions. And
the results mentioned in paper [2] speak in favour of the latter model.

BOLTZMANN EQUATION

We shall assume that the electrons taking part in the charge transfer are
exposed to-an external electric field and are in an interaction with the lattice
ﬁ«og&mo:w. ‘When computing the current density we must find the wén@mo
value of the electron velocity which is represented by the trace of the product
from the velocity operator and the density matrix of the system considered.
The density matrix is determined by the Neumann equation

do:- -4

o le®) m_.l'mp.rg + Hel, i (1)

In which Hy = (2m)-1p2 is the Hamiltonian of the quasi-free .electron with
the effective mass m, Hy, is the Hamiltonian of the lattice vibrations which
can be written as a sum of simple harmonic oscillator Hamiltonians, each
characterized by an angular frequency @w; with the phonon vector @ H F=
= -efx represents the interaction of the electron with the mnﬂoﬁn electric
field of the intensity & applied in the z-direction.

H; = M |85 az exp {ic .7} 4 V¥ af +exp {— ig . 7}

represents the electron-lattice interaction energy with V. characterizing
the coupling and a7, az standing for the dimensionless creation and annihilation
operators of phonon with frequency ws. . : .
Kubo [11] has drawn . attention to the fact that formal solution of the
equation (1) satisfying the initial condition g(— oco) = go(Hy + H L+ Hi)
(with go being the equilibrium density matrix) can be written in the form

mS”mc,TM\. 6Xp m@nﬁ&cufm;:*;m&Q\IS X

xh%\ym&o%i W (Ho + Hp 4 Hy) (' — 1) dr'.

After o(t') is expressed in form of the power series in Hy this integral equation
can be iterated and the terms of the expansion of g can be successively com-
puted.. Since Hy + H; does not commute with H; mathematical difficulties
occur.in the treatment mentioned. Though H; is a small perturbation the

v
higher order terms of the expansion exp Yy (Ho + Hp + Hyt) in powers

of H; cannot be simply omitted since ¢ is integrated over an infinite domain.
When alternating fields are considered the direct expression for the term
linear in Hy can be computed by means of the developed graph technique.
In case of a uniform electric field the direct computation is not possible and
the treatment leads to the kinetic equation representing the generalization
of the Boltzmann equation [12].

The extension of this treatment to higher order terms in the magnitude
of the applied field would be difficult. As far as the electron-lattice interaction
is concerned we shall therefore work with the approximation which is used
in the treatment leading to the Boltzmann equation.

If a new operator is introduced

N&MAS = exXp M Amo -+ mhvm N.N.H exXp 4§ — w Amc -+ mhvn
and similarly H;, and g’ are defined, equation (1) gives

00'(t)
ot

le'(t), Hy(t) + Hy(t)]. (2)

St

The formal solution of equation (2) can be written in the form

t

o'(t) = o'lto) + w [o'(), Ht') + Hiyt')] dt, 3)

We shall use the representation in which Hy -+ Hy, is diagonal. The ei-
genvalues of Hy will be denoted by &(f) and corresponding eigenfunctions,
which are normalized plane waves, will be denoted by |%>. The eigenfunctions
and eigenvalues of H;, will be denoted by {N) and Ex respectively. The cor-
responding quantities for Hamiltonian of the oscillator having the frequency
oz will be signified by |N-) and E(N;) = (N; + 1/2)kw2, N, taking on -all
non-negative integral values. . S .

We shall assume that the lattice vibrations remain in thermal equilibrium
in spite of their coupling to the electrons which receive the energy from the
external electric field. This enables us to average over the variables of the
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Tlattice which simplifies the general treatment leading to the coupled equations
for the electron and phonon distributions. The assumption mentioned is well
substantiated for temperatures above 35° K [3]. Anyhow, we are not interested
in the lower temperatures since in that case the scattering on lattice vibrations
need not prevail over the scattering on impurities. Then the distribution

function of electrons f(f) represents the diagonal elements of the matrix f
defined by

CHIflEy =3 CENlolEN>
N
and satisfying the relation

Nl N> = CEIf[E'S P(N) 6.5,

@ @:L \
mfﬁl@xm.l |m<tv Woxw ||>|
koT J§ koT
ara
[9]. Since Hr does not contain lattice variables, equation (3) gives the
following result for f:

in which

EIf' O — EIf ()T KIS (), Hp(t') 1> dt' +

)
13

w <EN|[e'(t), H(e))[EN> dr'. (4)

If o’(#') is replaced by g'(fo) + o1(fo, t'), in which oy(fo, t') is of the first order
in H; and zeroth order in Hj, the same treatment as in [9] gives for t-ty large
mbo:mr

- i of &, t B .
<ES O — <EIf (ta) > = (¢ — to) % | U, He @ik e (5)
s J
A
| o
with % representing the collision term of the Boltzmann equation. Since
s
the diagonal mHEm:ﬁ satisfy the following relations
<EILF@), Ht k> = <EILfE), Helik, = <klfit
equation (5) can be written in the form
L
dftk.t) i \ B af(k \
o u Ca YT

‘When the expression under the integral equals zero, the equation is always
satisfied. This gives for the steady state

of(k d
] faw@]
o |p ot |y
in which
af (k) i . .8@ @ B=—— Y F.vs 7
a .= % ) ; \Lf, 71k = w@ (k).

This proves that the Boltzmann equation can be obtained in the pwﬁnox_spsﬁi

in which the drift term has its origin directly in the expression W.‘ [o'(t),
L

..w
)
H,(t')] d’, but the collision term is obtained from the term M ﬁ o'(t"), Hyt")de'
12
when ¢’(t') has been substituted by the expression o'(fs) + ei{fo, t'). However
precise the drift term is, a certain inaccuracy remains in the Boltzmann
equation due to the approximate character of the collision term.

CORRECTION TERMS

First of all we are interested in the change of situation after ¢’(f') has been
approximated with accuracy to the first order in H,. This approximation
gives rise to the contribution which is derived from the following expression

-1, 4 t”
@. # Ly 7y
Ag'()) = 7 di” | de” | de” x [[[o’ (bo), H(t" -+ to)], Hp(t" +to)], Hi(t' +-to)],  (6)

o

0 0 0

which has not been included in the standard treatment. We shall assume that
the contributions of terms cintaining non diagonal matrix elements of f can
be neglected. This assumption can be substantiated by the fact that in standard
transport theory these terms are proved to be of higher order in H; than the
diagonal ones [8].

If the following relations are utilized

(N3laf|N; — 1> = (N; — gz | N> = |5
(Nzlaz| Ny + 1) = (N; + Lad [N;> = |/N; +1,
Clexp(io . E> = 8t 7 3,

Celexp(— i . P)E'> = 0p3 3



and the notation
1

A= - [e(% + &) — &(f) — k3],

1
B = . [e(k — 6) — &(F) + o)

is introduced, the appearance of the following contribution

<Eiafiky = Ewﬂ i M (V3l? | — NoCEIf o) B> PON)E + 51 H [k + 3 @WV -
Ns
= (V3 + OIS PO) B — 3{Hpll — 35 @Mg +
+ Nz &+ SIStk + 35 P(... Ny — 1. )E + 31Hell + S .@M& +
+ (N3 + 1)<k — aif(eo)lE — 35 ... Ny 1.0 G — GHAE — 3 .@M& -
= N3k + Slfto)k + 5> Py Ny — Lo WEHpll> % —
— (N + 1)<E l ol f(to)lk — 5> (... Ny + 1) CGEIHR B % 4+
o+ N; B POV)CEIHE =
D(B)

T 5 + 1) <Elfw)|k> PRV <HHRE 5 |
&w the expression (% f) — f(to)|E> can be easily proved. By 9 (4) the expres-
stons of the type [mA2(t — )17 {1 — cos[A(t — )]} and type (md)-1sin
[4(t — %)] are denoted. These expressions for £ — lo large enough lose their
dependence on ¢ — #; and in integrals of smooth functions of 4 act as §(A).
Since the &mmoﬁm.u matrix elements from Hy do not depend on %, for Af we
have <ElAf|E> = 0. This is the reason why the expression (6) need not be
considered when deriving the Boltzmann equation.

Ifin o'(t') from equation (4) also the second order term is included a contri-
bution appears with its origin in .

'8

o~
1

~
&
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t” [
A9 =] | ar |a | ar | aF x
0 [} 0 0
X [llle" o), Hit + to)], Hp(t" + to)], Hy(t" + t0)], H(t' + t0)].

Due to the occurence of the four-fold time integral from 16 terms represented
by the above written commutator the derivation of the contribution would
be rather tedious. We shall only mention some properties of this contribution
when non-diagonal matrix elements of f are again neglected. Since expressions
of the form

vk, 0, &) [CRIHPIE YE (Hrlk> — < -+ 5| Hpll'>CH | Hall 1 o]
appear instead of
a(k, o) [<EIHp(k> — < + 5|Hplk & 35]

occuring in the lower approximation, the contribution is no more zero. For
¢t — to large enough its dependence on time is again linear, i. e. the realization
of the steady state is admitted. The latter result gives rise to doubt as to-
the validity of the assumptions used since the treatment which follows pro-
ves the unrealizability of the steady state in the model considered.

STEADY CURRENT PROBLEM

Strong fields require the iteration process in which the expansion of the
density matrix only in powers of electron-phonon interaction occurs. If a new
density operator is introduced by means of the relation .

e. s.
m:SH@N@ 5 N&waw % (o + Hp)t; %

i 1
X o(f) exp | — Mﬁ&cl_.mlw exp{ — " Hy
and if by a similar relation H 7 is defined, the density matrix equation takes
the form

do"(t) ¢ .
—— = — [o"(t), H'()1.
Py . [e"(t), H(t)]. (7)

If 0"(t) is expressed in form of series in powers of H



0"(f) = o"(to) + 0i(to, t) + oglto, &) + ...

in which g is of the first order and g of the second order in H;, the following

expressions can be obtained from the equation (7)

-t

7

@NQov wv = w. _HmtAncY NNM\A? + n\z de,

0

o5lto, £) = M de’ | de” [[o"(te), Hi(to + ¢}, Hi(to + ¢)].

0 0
Then the distribution function with an accuracy to second order terms in H;
can be written in the form '

CEIf @) E> = <EIf(to) _av + <klfyto, t Wy + AE.\NQ? >
with

k\filto, )Y = 5 ENloi(to, YEN
N

and A‘\E fa(to, )|k similarly defined. Since the diagonal in [N > matrix elements
of H; equals zero, <k|fi(to,t)|E> equals zero too and only (E|fato, t)[k> is
to be investigated. In this term the matrix elements of H; must be expressed
by means of the matrix elements of H;. This treatment shows a difference
in comparison with the treatment of paper [9] leading to the Boltzmann

- s- .
m@:mfo:.Hsmnm@Qommxw Wm&% ermnanamxw WQ.? +m~m:mv@mm_nmu

in which m.wo does not commute with Hp. It is known (e. g. [13]) that the opera-
tor ?zon_ob. exp [aof + H#)] can be expressed in the form exp (a#) A (a)
exp (a/) with ¢ (a) satisfying the differential equation

ox

[ma,«l = exp (— aB)A exp (aB)H — H 4 .

Since

(O e S

n

! (— a)=
exp (— afB)s/ exp (aB) | w{%i (BIB... (B, ..]

n=0

the solution of the equation (8) is in general very complicated. As far as
&/ = Ho and # = Hp are chosen the problem is simplified, since from commu-
tators of the type [... [/, %], Z]... #] only [, %] and [[¥, Z], #] differ

10

from zero and [, &), #] = co represents the c-number. Equation (8) then
takes the form

oA , a?
.ml = [, H] + alt, BIA +Mn?&\u
a

which has the following solution

awac
A = exp (a )L exp (— as/) exp ﬂ

with
a

@ =exp| [wexp (— St B) oxp (p)u
P ,
In the effective mass approximation [/, #] ~ p, commutes with 27 and the
considered operator function can be written in the form

" (Ho+ Het ) oxp |- Hat] x
expi\— = ex — ——texp 7 Hpt
p mﬁ 0 F) p e L] PR
2 ) Hut teEp 2 ,
X exp{— expl{ — —— .
P % o P 2 mh
&Ocsw ;
Then the term exp | — ey does not appear in the result due to the

fact that it is eliminated by the complex conjugated term.
The treatment similar to that of the paper [9] leads to the expression for
& ?Q?S:@ in which the time integrals of the form

-4y t
% dt’ &2 exp {i[o(t" 4 to) - Q (" +fo 21} X exp {—i[w(t’ 4 to) + Q (' + to ﬁw

c

oceur.
We could hardly succeed in their direct evaluation and therefore we choose
s ; . : ; : . eliog
the approximation used in the previous caption, in which exp | 4 ¢ -
1

(t + to)2] is to be expressed with an accuracy to second order term in powers

of E. Doing so we can find that for ¢ — fo large enough the zeroth order term
of o

in £ gives the contribution of the form (f — &) |—| , In which |—
ot |g ot |
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stands for the standard collision term. In the contributions from the higher
order terms the higher powers of time appear; this makes the realization of

the steady state impossible. Thus the model used is not suitable for m»aosm
electric fields.

GENERALIZED THEORY

When looking for the suitable model we must take into consideration the
interaction of the system with its environment. When higher order terms in
the intensity of the applied field are included the effect of heating the crystal
appears, which in the experiment is compensated by cooling the sample in
which the steady current is realized. This effect was not taken into account
in the theory mentioned above.

Lax in paper [10], dealing with the direct expression for era density matrix
in a weak electric field, has drawn attention to the fact that the interaction
ier,m&o environment can be taken into account by adding the term ﬁ
into the density matrix equation. In weak electric fields already weak inter-
action (v — oo) of this type makes the realization of the steady current possible.
In the strong field the interaction with 7 definite must be expected to maintain
the steady current. Since Kubo’s formal solution of the density matrix equation
(used also in the paper [10]) could be hardly used in case of a uniform electric
field a different treatment is to be chosen.

We shall assume that the interaction with the environment is responsible
for the fact that the system from its initial equilibrium (corresponding to the
absence of the electric field) can later attain the steady state. We shall thus
look for the solution of the equation

7 s =

= lo Ho -+ He + Ho+ H— 2%, (10)
‘which satisfies the initial condition o(— oo) = go. For the sake of simplicity
we shall assume that go is Boltzmann equilibrium density matrix, i. e. we
shall investigate semiconductors in which low-.concentration of conduction
electrons permits the mentioned assumption.

The formal solution of the equation (10) can be expected in the form

R E
' —t 7
iy | 5P % (¢ — t)(Ho + Hy, -+ Hp) ) X

i
oft) = go + 7 | exp

12

X Lole), Haoxp { = = (¢ — Oy + Ha -+ He) | & + 50

Then ¢{f) must m@mm@ the equation

§ o at)
() _ H o0, Ho + Hy + Hel + — ES Ho+ Hy -+ He] — ,
at

T
€,m§ the initial condition g(— oo) = 0. It can be opqu ?.95@ that o(¢) of

the following form is available

¢
' —t

T

o(t) = i | exp exp WQ\ — t}(Ho + Hp + Hp)) %

-o0

% [po, Ho +- Hp + Hplexp{— — Q — 8)(Ho + Hr + mi de’.

After exp L (Ho + Hp)t] is expressed by means of (9) and the relation
NM\ "

7. i 7 7 i 7Y = - . A Bl
Q_% £ | ) = (#|om| = 5 b £) ~ Dbk Sy

is used, we can write

5 ) ' —t
N e(O)FN> = EN|oolkN> + - | exp |~ X
ot
S ) ' —
x E'Not), HJlk'N > dt + M exp | —~ X
(&' Nileo, Ho + Hi + Hp]['N> dt, an
with % = ks + E“ ky, k). Since ehi~lE(’ — 1) does not contain
k.

space coordinates the following relations are valid
@ Nlo), HAENY = ENilo), HillEN>
' Nlleo, Ho + Hr + He)lF'N> = (&Nlleo, Ho + Hu + Hp)l kN>
and the equation (11) gives
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t

GeNo(t) ¢ ==

T

- - - %
kN> = <kNloolkN) + o | exp X

~00

X CENIle(t"), Hi) + loo, Ho -+ Hy, + HF|EN> de'. (12)

Hm is oc.iozm that the diagonal matrix elements of the first order terms in H
give zero. In order to ensure the accuracy to second order terms in H. ém
have to wo@?g o(t') in (12) by the first order term in H; which will be Q@bwaom
by o(1, t). .Hﬂon the property of H; it is obvious that the following non-dia-
gonal matrix elements of o(1, t) are to be expressed : ¢

. ENlo(1, )TNy = EN|p(L, )E £ 3, ... Ns T 1.5

Since a T
t

t—

T

EN (o1, laN1> = <N |oo(1)[BN1) +W. exp «

~o0

L m ...
VA NnN/w [ \ll ..J l\ s |v
A 9% P mlas\n ZVAw 29% = chlehxwls w.@<v X

; @.%?
VA K I \ |v\ 1:
A» ze% o el%w zv@ Ni([eo(1), Ho + Hy1 + Hr] +

teEp,
2mh

+ [00(0), H))E, N> Aﬁz_ exp (@t —ty2 ﬁ?v X

o i
x AFZ_ exp | — — (Ho+ Hy)(t' — 1) ﬁ?v X

3 s. ..
X AFZH muﬁul ﬁmmmiﬁla ?Zwv de
with

> eE(t’ —1)

k= \na+[ww|m~@w~nu s

. et — i
\ou = | ks + IIN&IVWNQ:\W ki),

the following result can be obtained

14

14
= a5 - - 7 ' — ¢t
GeNlo(1, )kN1> = <kNleo(1)[k1N1)> + P exp | —
3
P
2mh

X exp WTQW N) — ey, N)IE — 1)} exp (lrs — kg)(t' — £)2] X

x CeNlfoo(1), Ho + Hy + Hr) + [eo(0), HlluN1> dt,

in which the zeroth and first order terms of go in powers of H; are denoted
by 00(0). and go(1) respectively and the eigenvalues af Ho + Hy are denoted

by E&(k, N). When the following fact is utilized

(EN[00(0), Hi] + [eo(1), Ho + HL)E £ 6,... N; F1...0=0,

equation (12) gives
t
t—t

o o - - — \Nl\
(ENlplkNy = CkNlgolkN> + - exp | —

]

X

« CEN|[e0(0), Hr] + [eo(1), Hi] + loo(2), Ho + Hy + Hpl kN> dt’ —

t

. t
Hw & ' —t 4 " —t 5
. e I" exp . t" exp =

L
-0

N, —°
T s - , ) tel

X lexp {— [e(k, N) — e(k1, N1)J(t" — t')} exp
% . 2mk

(ke — k)(t" — )| X

% CkN|[oo(1), He)lEaN 1> N1 Hl kN> — CGEN|Hy N> e N1 {oo(1), HF)EN Y X
' A .2 L, N — ¢ ok
X exp 7 HmA 1, HM - mA ) ZA - v exp omh

(kg — Eag)®" — )21

The second term from the right side of this equation obviously gives

t
i ' — ¢
,wlw. exp -

~00

GiN[eo(0) + eo(2), HIENY dt”.

To express the third term we can utilize the following relations

3 P
N[00, HrllkaNs> = teB | — +
{kN\loo, HrlikaN2)> = te e o

eNloolkaN2y,
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L A I |
s Ok & 0 ENIHfk £5,...N; F1..> =0

<ENHJE + 5,... N E 4o, ... N: F L HJENY = [Val2H (4 ),
.§+ y =Nz, A(=0)=N; +1,
ENloo()[ELN1) = [go(e(k, N)) — oofe(Fr, N1)[e(F, N) —
— o, 5-@5@@5,
ENEN> = 3 VA (o 3 Nals ole(E, N))(elk = 5,.. N; F
- — ek, M) + [oo(e(® - 5,... N; T1..)) —

4

— oole(l, N[k £ 3, ... Ny T 1..) — e(F, N)J-2).

o

Then we obtain

CENelEN = <EN|eol kN __ etB [doo(e(k, V)
<kN|golkN > 5 ok +M:\m_m X

7 1

X N (4 0) — | oole(®, N)) {e(k + 5, .

8ky | koT Ny F 1) — ek, Ny}t +

IT M@QA.@AM HW mu PN N/NN ul*nl H.vv ) @oAQOq N(vaﬁmﬁwm HW mq N |IT ﬂv B

t v

- 1eE ’
—e(k, N)}2|p——— Vel A (L G , ' —t L
) 2 {_ s2PA (L o) | dt exp . dt” exp - X
Q“ R . ] .
X exp W?QPNS —ekto,.. . Ns TL. )¢ —t)] exp{+ telioy (" — )2 —
2mk
)
.| exp r (elkto,...N2F1...) — ek, N))t" —¢t')} exp { F e (¢ —1)2)| X
2mh
y 7 Y :
+ ————oole(k + 5, .. N; F1...)) —

Oky, mQaa + 02)
oo(e(®, N)] [e(E +5,... Na T 1..) — &(F, N)J-1).

After the new variable " i i
t =1" — t' is introduced, the f i i
] , oll
be used when computing the time integrals ewing relation can
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N T s sV
exp | — | exp (iwl) exp (2Qiz) df = wlmm ,MQ;\D )+ smg\bsw

0
; 1T Nt ] . ,
X OXp . exp (tol) -8.\ 58 A:chM exp | —| exp (tod) X ,W
T
e - T 1 ¢ -
x e/an +is/anyd = — — o+~ | exp | =) exp (i) x

x {o/a + s/} di.

Due to the occurence of the damping factor exp(f|r) we shall replace the function

i
\ e AQQ\DN 4+ sm.g\bm } by the approximate expression I -+ Y Q3.

dﬁﬁb the average over the lattice variables is taken and the time integration
is performed we obtain for the part of the distribution function which contri-

butes to the current the following expression

eBrZo| @ _
AL = — —~ exp|— — &lk); + > |V;12N;
HAfIE: e | = g B M_ ;o
i ! k4 ) BRI
- BE YO Ty S _
e exp P (e(k + ) o P\ Tt &) | |[e(E + o)
- 1 1
— e(k)—he:] - ! P e(f) 1[e(®) — ek + 0) 4 hwzlt) +
V3N 1 6 ! P —9)+ &
+ V2NV + D) e exp T (e(k — o) + hw3)
1
—exp{ — (k) (e — o) — &k) + hozl?+
ko
1 1 - _ - 4 —
Mme\s% - (%) [e(F) — e(® — &) — hog]™t| + w:\m_wzu X
V1 oo, (303 - 1 3ws > L
X logs + 8>+q 4 - dTr _ MM M+ l|8w.+»a 4
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1 3021\ 1/ 8 d 1

+ - e k+o + o N 5
T xp{ — . . By
N.w T mNn.& mANGH I—I Q&v w \h@% AMA J_l O.V &ﬂthv
- ELUA mAMV [e( + mv — hws — mamztw -+
-1 % [4 3
Eoy (303~ 1 3wy » 2
ifﬁv ﬁ wpgl— twpy] T2 SN
* ko Imi\ T 3 2 V-3 _ +
L Seks v o P
IS — - Ry
.ﬂw T m\ﬁﬁ @ANnH — Q&w qu \no% Amﬁ Q.v l_l @anv
H = - -
s 6Xp Tl e®) | [e(E — 3) + howy — k)], (13)

in which the terms of higher than second order in E are neglected and the
following notation has been introduced

H > = -
OFs = 5 le(k) — ek + 6) + Fioy],

r 5
gy = W [e(k) — ek — o) — k],
= .@.2 =4 .@2 Nmﬁcuw ~
.N/va = GNHV —_ ‘N/Nt ex —_—— | = L ' 1
FoT m R P B b ey B B
N N
H,
Z Tr|exp | — —]|.
koT

When damping is not sufficient to make i +— Q% a good approximation
3

T . . —— 1
of Y GL\DS + @%L\D t)}, the higher order term in f — namely {IDN? —

must be included. This leads to g@ appearance of the third order terms in B
in the expression for <E\AfIE>. After M - is replaced by V(2r)-3 % ... d3¢ the

.m:.@oe expression for the current density can be obtained by substituting (13)
into the expression

18
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T e |

d3k

in which » stands for the electron concentration and V for the volume of the
sample. The choice of v must be performed so as to ensure the equivalence of
the considered model with the experiment. ,
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