GENERALISATION OF A NUMBER-THEORETICAL RESULT

ŠTEFAN ZNÁM, Bratislava

Let $k \ge 3$ be a natural number and let M be a set of natural numbers. We say that M is a k-thin set if from the condition

$$a_1, a_2, \ldots, a_{k-1} \in M$$

it follows that

$$a_1+a_2+\ldots+a_{k-1}\notin M$$
.

With other words: the set M is k-thin if in its numbers the equation

$$a_1 + a_2 + \ldots + a_{k-1} = a_k$$

is not solvable (the numbers a_i can be equal).

Let us denote by f(k, p) the greatest natural number for which there exist p disjoint k-thin sets S_1, S_2, \ldots, S_p such that

$$\{1, 2, ..., f(k, p)\} = \bigcup_{i=1}^{p} S_i.$$

The existence of f(k, p) for arbitrary k and p follows from Theorems 3 and 4 of article [3].

The case k=3 was treated by I. Schur in article [4]. He proved namely the inequalities

(1)
$$f(3, p + 1) \ge 3 \cdot f(3, p) + 1$$
,

$$f(3,p) \geq rac{3p-1}{2}$$
 .

(2)

In our article we shall generalize the inequalities (1) and (2) for the case of an arbitrary $k \ge 3$ and show their application to the theory of graphs.

Theorem 1. Let $k \geq 3$ and p be natural numbers. We have

(3)
$$f(k, p + 1) \ge k \cdot f(k, p) + (k - 2).$$

Note 1. For an arbitrary $k \ge 3$ we have f(k, 1) = k - 2 and therefore because of (3)

$$\begin{split} f(k,\,p) &\geqq k \cdot f(k,\,p-1) + (k-2) \geqq k^2 \cdot f(k,\,p-2) + k(k-2) + (k-2) \geqq \\ &\trianglerighteq \dots \geqq k^{p-1} \cdot f(k,\,1) + k^{p-2}(k-2) + \dots + k(k-2) + (k-2) = \\ &= (k-2)(k^{p-1} + k^{p-2} + \dots + k + 1) = \frac{k-2}{k-1} (k^p-1), \end{split}$$

e.
$$f(k,p) \geqq \frac{k-2}{k-1} (k^p-1)$$

and this is a generalisation of the relation (2) for any $k \geq 3$.

Note 2. If in (3) we put k=3, we get the relation (1).

Proof of the Theorem 1. From the definition of f(k, p) it follows that there exist p disjoint k-thin sets S_1, S_2, \ldots, S_p such that

$$\{1, 2, ..., f(k, p)\} = \bigcup_{i=1}^{p} S_i.$$

Let us put

$$S_{p+1} = \{f(k, p) + 1, f(k, p) + 2, ..., (k-1) f(k, p) + (k-2)\}.$$

From the inequality

$$(k-1)\left[f(k,p)+1\right] > (k-1)f(k,p) + (k-2)$$

it follows that S_{p+1} is a k-thin set. Now, to accomplish the proof, it is sufficient to show that the numbers

(4)
$$[(k-1)f(k,p)+(k-1)], [(k-1)f(k,p)+k], ..., [kf(k,p)+(k-2)]$$

(the number of which is f(k, p)) can be divided into $S_1, S_2, ..., S_p$ so that after adding some numbers from (4) to S_i we get again a k-thin set A_i .

Let us denote d=(k-1)f(k,p)+(k-2). Every number a from (4) can be written in the form a=c(a)+d, where c(a) is a natural number fulfilling the condition

$$0 < c(a) \le f(k, p).$$

Now let us add each number a from (4) to the same set to which the number

c(a) belongs. The sets arisen in this way denote by $A_1, A_2, ..., A_p$. We shall prove that every A_i (i = 1, 2, ..., p) is a k-thin set.

Let be $a_1, a_2, \ldots, a_{k-1} \in A_i$. We shall distinguish three cases

1. $a_m \le f(k, p)$ for every m = 1, 2, ..., k-1. In this case we have: $a_1 + a_2 + ... + a_{k-1} < d$. From the construction of the set A_i it follows that $a_1 + a_2 + ... + a_{k-1} \notin A_i$.

2. Let exactly one of the numbers a_m be greater than d and the other less or equal to f(k, p). We can assume that just a_1 is greater than d and so a_2 , a_3 , ..., $a_{k-1} \in S_t$. Since $a_1 > d > f(k, p)$, a_1 is one of the numbers (4); hence $c(a_1) = a_1 - d \le f(k, p)$ and from the construction of the set A_t it follows, that $a_1 - d \in S_t$. The set S_t is k-thin, hence we have

$$(a_1-d)+a_2+\ldots+a_{k-1}\notin S_t$$

We shall show that $a=a_1+a_2+\ldots+a_{k-1}\notin A_i$. We shall prove indirectly. Assume that a belongs to A_i . Since a>d, we can write a=d+c(a); obviously

$$c(a) = (a_1 - d) + a_2 + \ldots + a_{k-1}.$$

From the construction of the set A_i it follows that c(a) belongs to S_i . This is a contradiction.

3. Let at least two of the numbers a_m be greater than d. Then we have

$$a_1 + a_2 + \ldots + a_{k-1} > 2d > kf(k, p) + (k-2)$$

(since $k \ge 3$) and therefore $a_1 + a_2 + \ldots + a_{k-1} \notin A_i$.

The proof of the Theorem is completed, because the above considerations are correct for arbitrary i = 1, 2, ..., p.

Note 3. The Theorem gives in fact also a method of the direct splitting of the numbers

1, 2, ...,
$$\frac{k-2}{k-1}(k^p-1)$$

into p k-thin sets. We shall illustrate this method on the case $k=5,\,p=3.$ Because of note 1 we have

$$f(5, 3) \ge \frac{3}{4}(5^3 - 1) = 93$$

The division of the numbers 1, 2, ..., 93 into three 5-thin sets is the following:

$$A_1 = \{1, 2, 3, 16, 17, 18, 76, 77, 78, 91, 92, 93\}$$

 $A_2 = \{4, 5, ..., 15, 79, 80, ..., 90\}$
 $A_3 = \{19, 20, ..., 75\}$

of those of [1]. theory of graphs. All considerations of part III are direct generalisation We shall apply the above results to the solving of a known problem of the

arise a complete subgraph of k vertices, all edges of which are coloured by the same colour. te graph of g(k, p) vertices can be coloured by p colours so that there does not Let g(k, p) denote the greatest natural number such that all edges of a comple-

The existence of g(k, p) for any natural k and p follows from the article

Theorem 2. Let $k \geq 3$ and p be natural numbers. We have

(5)
$$g(k, p) \ge f(k, p) + 1.$$

f(k, p) + 1 vertices. Let us denote them by $P_0, P_1, ..., P_{f(k,p)}$. Colour all edges of graph G by the colours $C_1, C_2, ..., C_p$ in the following way: colour vertices $P_{i_1}, P_{i_2}, ..., P_{i_k}$ are in this colouring coloured by the same colour the edge interconnecting vertices P_i and P_j by the colour C_m if and only if from the definition of the number f(k, p)). Let G be a complete graph with C_{m_0} . We can suppose that $|i-j| \in A_m$. Let us suppose that all edges of a complete subgraph with k1, 2, ..., f(k, p) belongs exactly to one of them (existence of such sets follows Proof. Let $A_1, A_2, ..., A_p$ be such k-thin sets that each of the numbers

$$i_1>i_2>\ldots>i_k$$

1. e.

$$(i_1-i_2), (i_2-i_3), \ldots, (i_{k-1}-i_k), (i_1-i_k) \in A_{m_0}.$$

Since A_{mo} is a k-thin set, this is a contradiction, because

$$(i_1-i_2)+(i_2-i_3)+\ldots+(i_{k-1}-i_k)=(i_1-i_k).$$

The proof of Theorem 2 is complete

this paper. The author is thankful to Prof. T. Salát for his very valuable notes regarding

REFERENCES

- [2] Greenwood R. E., Gleason A. M., Combinatorial relations and chromatic graphs, [1] Abbott H. L., Moser L., Sum-free sets of integers, Acta arithm. II (1966), 393-396. Canad. J. Math. 7 (1955), 1-7.
- [3] Radó R., Studien zur Kombinatorik, Math. Z. 36 (1933), 424—480.

- [4] Schur I., Über die Kongruenz $x^m + y^m \equiv z^m \pmod{p}$, Jahresber. Disch. Math.-Ver. 25 (1916), 114-117.
- [5] Erdős P., Some remarks on the theory of graphs, Bull. Amer. Math. Soc. 53 (1947), 292 - 299.

Received October 13, 1965

Slovenskej vysokej školy technickej, Chemickotechnologickej fakulty Katedra matematiky