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ON CYCLIC DECOMPOSITIONS
OF THE COMPLETE GRAPH INTO (4m - 2)-GONS

ALEXANDER ROSA, Bratislava

The construction of a cyclic decomposition of the complete graph into
p-gons, where p =0 (mod 4), was given in paper [1}; the case p = 1 {(mod 2)
was investigated in [2]. This article gives the solution of the problem of a cyclic
decomposition of the complete graph in the remaining case p = 2 (mod 4).

Let k be natural, and let p of the form p = 4m + 2 be given, where m is
natural. Denote n = 2kp -+ 1. In agreement to [2] the (k X p)-matrix A =
= |las|| will be called a matrix of type (1), if {au, ..., akp} == {1, 2, ..., kp}
holds.

Theorem 1. For arbitrary k and p of the form p = 4m -+ 2 there exists a
(k X p)-matriz A = |lay|| of the type (1) and constants g7 =1 or —1 such
that

»
> ayeis = 0 (mod n)
j=1
holds for all t =1, ..., k.

Proof. The matrix A = [lay|| and the constants e; satisfying the conditions
of the theorem can be determined as follows:

(G—1)p +j 1<j<p—2
Ay = Qo‘llslTvao'_. %“@IM
(k—12 4 L)p ji=pn

where &;,4 equals —1 and all remaining & equal + 1if m = 1, ei,4; €6, 8,75
€410, 11, ---» Ei,p—4, E,p-3 equal —1 and all remaining &; equal 41

if m = 2.
One can see easily that the conditions of the theorem are satisfied. Obviously
each of the numbers 1, 2, ..., kp appears in the matrix A exactly once. The

i-th row of the matrix A is of the form:

G—lp+ 1L, GE—lp+2 ..,ip—4 ip—3 ip—2 (k—i+lp—1
(k —i -+ 1)p. We obtain
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Sy ey = 06— Vp 1+ [6— Up + 20 (6 — Dp + 31—
—[G— p+ 41+ {(— p + 51— [ — 1p + 61—
[ —N)p+ 7]+ [ — Dp + 81} + { (i — Vp + 9)—
[ — Y + 0] — [ — L)p + 1]+ [ — Dp + 12} + ..
o {ip—5)—(ip—4) —(@p—3) + (p —2)} +
F Ik —i 4 Up— 1+ (b— i+ Np=2i—Lp + 2 +
+k—i+p—1+ (k—i+ 1)p=2kp + 1.

Let there be given a complete graph {(n) with « vertices vy, ..., vn, where
 is of the form n = 2kp + 1, p is of the form p = 4m + 2, k is natural.

The length of an edge vy in the graph (n) is defined as a minimum of the
numbers |i — j|, n — [{ — j|. By the turning of an edge vy in the graph <(n)
we mean the adding of a 1 to the indices, whereby we get the edge vi1v541
from the edge v;v; (the indices are taken modulo n). By the turning of a polygon
in the graph (n> we mean a simultaneous turning of all edges of the polygon.

A decomposition # = {K1, ..., K,} of the complete graph into r polygons
Ky, ..., K, is called cyeclic if the following holds: If # contains a polygon K,
then # contains also the polygon K’ obtained from K by turning.

Theorem 2. For an arbitrary natural k and for an arbitrary p of the form p =
— 4m + 2, wher: m is natural, there exists a cyclic decomposition of the graph
{2kp + 1) into p-gons.

Proof. Let in the graph (2kp + 1) be given k polygons, with p edges each:
Ky = {V0;5 Vilins s ViV $5 Bijis s Ui} G{L 2, ...2kp+1}j=12 ...k

If each of the possible lengths 1, 2, ..., kp in the graph (2kp + 1) is the length
of exactly one of kp edges of the p-gons Ki, ..., Ki, then call the system of
p-gons X == {Ki, ..., Ki} a basic system of p-gons in the graph {2kp +- 1).
We obtain a cyclic decomposition of the graph (2kp + 1) into p-gons if any
of the p-gons of the basic system is turned successivelly 2kp times.

The basic system of p-gons in the graph {2kp + 1) can be determined with
the help of the matrix of the type (1) satisfying the condition of Theorem 1.
Let A = ||asj|| be such a matrix and let E = ||zy|| be the corresponding matrix
of constants constructed to prove Theorem 1. Denote by A" and E’ the matrix
which arises from the matrix A and E if the elements of each row of the matrix
A and E respectively are permuted:

a) for m = 1 under the identic permutation
b) for m = 2 under the permutation
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www»m m q m ...w§+ww§\+ww3+»
123454m+14m—14m—3 ... 9 7 4m

w§+m»§\»§\+~»§+m
am—2 ... 8 6 4m + 2/.

The matrix A’ clearly also satisfies the conditions of Theorem 1 with the
constants mw..

Choose an arbitrary vertex v (z & {1, 2, ..., 2kp + 1}). The p-gon K will
be determined as follows:

NW..‘ = me&e“i.e:u ea+e:.€&+a;u YD ea+9.?2 ﬁawn
where

j
cr= ayept=1 ... k=1 ..p
y=1

It is easy to verify that no vertex appears in the sequence of the edges of
K; more than two times. Namely, it is easy to verify an equivalent statement
that no pair of numbers a, b, for which ¢ = b (mod 2kp 4 1), appears in the
following sequence of p numbers: .

G—1p+1, 26 —1)p+3, 3(—lpL+6 26— p+2 3G—Lp+7,
PR+ k—2) 46, plitk—2)F9 p2i+Ek—2)+4 pi+E—2)+
11, ..., p( + kb —2) 4+ 2m + 3,p(20 + b — 3) + 2m + 12,p(i 4 k —2) +
4 2m -+ 5, p(2i +k—2) + 2m + 3, pli +E—2)+ 2m + 7,
p2i+k—2)+2m+ 1, pl+Ek—2)+2m+9, .., pli+Eb—1)—

— 1, p2 4+ k—2)+ 7, pli +k—1)+ 1, 2kp + L.

This completes the proof of Theorem 2.

Example 1. The cyclic decomposition of the complete graph (61) into
10-gons will be obtained if each of the 10-gons K;, K2, Ks is turned successi-
velly 60 times (the vertices are denoted by »;,4 =1, ..., 61)%

K3 = {v1va, vavs, vav7, V7V3, VsVs, Vs¥s7, U37¥30, V3038, U3als2, 3201 }
Ko = ASSP VigV24 , V24V37, V37023, V23038, U3s¥s7, Us7U40, VaglUss, UssVaz. S%Q
K3 = ,mSeNm.. VaaVaa , VaaVs , VeVas3, Va3¥7, V7016, V16Vs50, Us0V17, V17¥52, eu%&.

By Theorem 2 with p = 2 (mod 4) there exists for an arbitrary n=1
(mod 2p) a cyclic decomposition of the graph (n) into p-gons. Obviously if
p =2 (mod 4) there exists no x, z 1 (mod 2p) so that for an arbitrary
n =z (mod 2p) there exists a cyclic decomposition of the graph <(n) into
p-gons. However, it is easy to verify that for some p, p = 2 (mod 4) there exist
nand z, 5= 1 so that n = x (mod 2p) and there exists a cyclic decomposition
of the graph (n) into p-gons. This fact is shown by the following example.
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Table 1

x ,x+10
410, z+7
z-+7 , x4+ 17
2417, z+14
z+14, z+24
z+24, x+21
x+21, x+31
z+431, x4+ 28
xz4+28, x+38
z+38,2+35
x+35, 2+ 45
z+45, x+42
x+42,243
z+3 ,x

x ,z+11
z4+11,z+7
z+7 ,z+18
z+18, x4+ 14
414, x+25
425, x+21
z+21, z+32
z-+ 382, x+28
x4 28, 2439
z+39, z+35
z-+ 35, x4+ 46
z-+46, z4-42
z+42, x4+ 4
rx+4 .,

Kq

x yx4+12
x+12, 247
o+ ,z+19
z+19, x4+ 14
z+14, x4-26
x+26, z+21
x+21,21+33
z+33, x4 28
128, 140
x4+ 40, 2+35
x4+ 35, x+47
z+47, x+42
x+42,2+5
z+5 ,x

K. K, Ks
x ,x+6 |x ,z+8 |z ,x+9
x+6 ,x+13|2+8 ,2+7 x+9 ,x+7
z+13, 126 jx+7 ,x+15|x+7 ,2+16
x4+ 26, x440 z415, x4+ 14 z+ 16, z+14
x+40, x+7 |z+14, 2422 z+ 14, 2423
z+7 ,x+22 422, x+21 z+23, z+21
z+22, 2+ 39 z+21, x+29 z+21, 430
2+39, x18 |z 29, w428 |2+ 30, x+28
x48 ,x+27|2z+28, 2136 x4+ 28, 437
x4+27,z+4 |x+36,2+35 z+37, 2435
z4+4 ,x+24 |2+ 35, 2+43 z+385, z+44
z+24, -1 46 r+43,x+42 x}-44, x+42
z446, z+25 r+42, x+1 z+42,2+2
x+425, x+1l ,2 rx+2 ,2
Example

6 times, which makes together 84 of 14-gons.
Now Theorem 2 can be combined with Theorem 1of [1]:

Theorem 3. For an a

2. A cyclic decomposition of the graph (49) into 14-gons (in this
case 49 = 21 (mod 28))
the vertices v; are denoted bri
graph (49> (all numbers in Ta
sition of the graph (49> into 14-gons wi
successively 48 times, and each of the 14-gons Ks, Kz, Kai, K5,

. This decomposition is given in Table 1. In this table
efly as 4; = denotes an arbitrary vertex vz of the
ble 1 are taken modulo 49). The cyeclic decompo- -
11 be obtained if the 14-gon Kj is turned
K¢ successively

rbitrary natural k and for an arbitrary even p > 2

there exists a cyclic decomposition of the graph (2kp + 1) into p-gons.
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