NOTE ON ERGODICITY

BELOSLAV RIEČAN, Bratislava

it is m(E) = 0 or m(X - E) = 0. (We do not suppose that T is measure iff for any almost invariant set $E \in S$ (i. e. such set E that $m(T^{-1} E \triangle E) = 0$) A measurable transformation T on a measure space (X, S, m) is ergodic,

replaced by the weaker assumption that T is incompressible. that in the criterion the assumption that T is measure preserving can be Our note deals with a criterion of ergodicity from paper [2]. We shall prove

that a Boolean σ -algebra S and a σ -isomorphism T of this algebra are given. Further a σ -ideal $N \subset S$ is given and TN = N. First we shall formulate our propositions algebraically. We shall suppose

 $E\in N$ or else iff from the relation $E-T^{-1}$ $E\in N$ it follows that T^{-1} $E-E\in N$ incompressible iff from the relation $T^{-1}E-E\in N$ it follows that $E-T^{-1}$ relation T^{-1} E $\subset E$ it follows that $E \longrightarrow T^{-1}$ $E \in N$. A σ -isomorphism T is A transformation T of S into S will be called incompressible, iff from the

have $TE = \{Tx : x \in E\}$. Besides, if T is incompressible and invertible, then = 0) then all the assumptions of our algebraic formulation are satisfied. We are measurable). If in addition T is non singular (i. e. m(E)=0 iff $m(T^{-1}E)=0$ tion X into X (i. e. T is one-to-one, onto and the transformations T, T^{-1} If T is an incompressible transformation, then $E \longrightarrow \bigcup T^{-n}$ $E \in N$ (see [3]). Let (X, S, m) be a measure space, S a σ -algebra, T an invertible transforma-

 $E_n = E \cap (T^{-n}E - \bigcup T^{-1}E) \ (n = 2, 3, \ldots),$ S onto itself, N be a σ -ideal in S, TN=N. For any $E\in S$ put $E_1=E\cap T^{-1}E$, $P = \{T^i E_j : 1 \le i < j, j > 1\}, \ G = E \cup \bigcup \{L : L \in P\}, F = G'.(1)$ **Theorem 1.** Let T be an incompressible σ -isomorphism of a Boolean σ -algebra

Then the set $R = \{E_i\} \cup P \cup \{F\}$ is a partition of the greatest element X of

(1) G' is the complement of the element G.

 $T^{-1}G \triangle G \in N$, $T^{-1}F \triangle F \in N$). the Boolean σ -algebra S and the elements $G,\,F$ are almost invariant under T (i.e.

 $\in P$, $T^kE_n \in P$ and $(i, j) \neq (k, n)$. If i = k, then $T^iE_j \cap T^kE_n = T^i(E_j \cap F_n)$ elements from the set P are disjoint. $\cap T^{k-i}E_n$). But k-i < n, hence $T^{k-i}E_n \subset E'$, while $E_f \subset E$. Hence any two $\cap E_n) = T^i O = O$. If $i \neq k$, hence e. g. i < k, then $T^i E_j \cap T^k E_n = T^i (E_j \cap E_j)$ have $T^iE_j \subset E'$, but $T^jE_j \subset E$. Hence $E \cap D = 0$ for all $D \in P$. Let $T^iE_j \in$ $E \longrightarrow \bigcup E_n \in N$. Notice that E_n are pairwise disjoint. Besides, for i < j we Proof. Evidently $E \cap \overset{\circ}{\bigcup} T^{-n}E = \overset{\circ}{\bigcup} E_n$. Since T is incompressible, it is

 $\cup \bigcup T^i E_f$, where $D \in N$. First of all $TC \in N$. Further Clearly $G = C \cup \bigcup E_i \cup \bigcup T'E_j$, where $C \in N$. Prove that $TG \subset D \cup E \cup C$ It remains to be proved that the elements F and G are almost invariant.

$$T \overset{\sim}{\bigcup} E_i = (T \overset{\sim}{\bigcup} E_i \cap E) \cup (T \overset{\sim}{\bigcup} E_i - E) \subset E \cup (T \overset{\sim}{\bigcup} E_i - E).$$

 $=TE \cap E - E = 0$. From this it follows But $T \overset{\sim}{\bigcup} E_t - E = \overset{\sim}{\bigcup} (TE_t - E)$, since $TE_1 - E = T(E \cap T^{-1}E) - E =$

$$T \overset{\sim}{\bigcup} E_i - E \subset \overset{\sim}{\bigcup} TE_k \subset \underset{i < j}{\bigcup} T^iE_j.$$

Finally

G is almost invariant. Now it is obvious that F is almost invariant too. Since T is incompressible, we have $T^{-1}G - G \in N$, hence $G \triangle T^{-1}G \in N$ and We have proved that $TG \subset D \cup G$, where $D \in N$, hence $G - T^{-1}G \in N$. $T(\bigcup T^iE_j)\subset\bigcup T^iE_j\cup\bigcup\limits_{j=2}^{\infty}T^jE_j\subset E\cup\bigcup\limits_{i< j}T^iE_j.$

a finite measure and T is measure preserving. choice of S, T, N introduced above. In [2] it is assumed besides that X has [2] easily follows. That theorem can result from Theorem 1 by the special Note 1. From Theorem 1 the recurrence-partition theorem from article

there is $D \subset H, D \notin N$ and a positive integer k such that $T^kD - H \in N$ We want to define another notion. An element $H \in S$ has a recurrent part iff is ergodic iff from the relation $T^{-1}E \triangle E \in N$ it follows that $E \in N$ or $E' \in N$. For an algebraic formulation of the next theorem we need to modify the notion of ergodic transformation. An isomorphism T of the algebra S onto S

condition that T be ergodic is that E contains no element $H \subset E, E - H
otin N$ **Theorem 2.** Let under the assumptions of Theorem 1 be $F \in N$. A sufficient

tion. Hence $H_1 \cap E \notin N$ and also $H_2 \cap E \notin N$. $=N_1\cup N_2$, where $N_1\in N$, $N_2\ \subset H_2$, but it is in contradiction to the assump- $\cap E \in N$, then $T^iE_j = N_1 \cup N_2$, where $N_1 \in N$, $N_2 \subset H_2$. Then also G = \cup H_2 , H_1 , H_2 are almost invariant, $H_1 \cap H_2 \in N$, $H_1 \notin N$, $H_2 \notin N$. If $H_1 \cap H_2 \in N$ Proof. If T is not ergodic, then there are H_1 , $H_2 \in S$ such that $G = H_1 \cup I$

 $H\cap E_n\notin N.$ But then H has a recurrent part $D=H\cap E_n$, since $T^n(H\cap E_n)$ $\cup \bigcup (H \cap E_n)$, where $N_1 \in N$ and N is a σ -ideal, there is such an n that Put $H=H_1\cap E$. From the above $H\notin N$, $E-H\notin N$. Since $H=N_1\cup$

 $\cup \ \cup \ \{ T^i E_j : i < j, j > 1 \}) = 0.$ E_i the set of all $x\in E$ for which $T^ix\in E$, but $T^jx\notin E$ for i>j. Let m(X-E)T be an incompressible and invertible transformation on X. Let $E \in \mathcal{S}.$ Denote by **Theorem 3.** Let (X, S, m) be a measure space with a completely finite measure,

m(E) > m(H) > 0, $T^nD \subset E$ for some n). with recurrent parts (i. e. that there do not exist sets, D, $H \in S$, $D \subset H \subset E$, A suffitient condition that T be ergodic is that E contains no proper subsets

m(E) = 0, then all assumptions of Theorem 2 are satisfied. Proof. S is a Boolean σ -algebra, T a σ -isomorphism. If we put $N = \{E :$

formation T such that there is no invariant measure equivalent to m.(3)an example of a space $(X,\,S,\,m)$ and an incompressible and invertible trans-In [2] it is supposed in addition that T is measure preserving. But we know Note 2. From Theorem 3 the ergodicity theorem from article [2] follows.

almost invariant set over E, if $B \supset E$, B is almost invariant and for any almost invariant set $C \supset E$ we have $B \longrightarrow C \in N$. Theorem 3 can be formulated also in another way. A set B is called the least

subsets with recurrent parts then T is ergodic. ry set and X be the least almost invariant set over E. If E contains no proper T be an incompressible and invertible transformation on X. Let $E \in S$ be an arbitra-**Theorem 4.** Let (X, S, m) be a measure space with a completely finite measure,

 $\cup \bigcup \{T^iE_j: i < j, j > 1\}$ is almost invariant, we have $m(X - E \cup \bigcup \{T^iE_j: i < j, j > 1\})$ (i < j, j > 1) = 0, hence we can use Theorem 3. Proof. If X is the least almost invariant set over E, then, since $E \cup$

322

REFERENCES

- [1] Halmos P. R., Lectures on Ergodic Theory, Tokyo 1956. (Лекции по эргодической теории, Москва 1959.)
- [2] Preisendorfer R. W., Roos B. W., Recurrence partitions of finite measure spaces with applications to ergodic theory, Trans. Amer. Math. Soc. 99 (1961), 91-101.
- [3] Ривчан Б., Замечание к теореме Пуанкаре о возвращении на булевских кольцах,
- [4] Wright F. B., The converse of the individual ergodic theorem, Proc. Amer. Math. Soc.

Received June 23, 1965.

Katedra matematiky a deskriptívnej geometrie Slovenskej vysokej školy technickej, Stavebnej fakulty

⁽²⁾ E is an arbitrary but fixed element.

⁽³⁾ See e. g. [1], p. 116 of the Russian translation.