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REFLECTORS AND COREFLECTORS
* ON DIAGRAMS

ARNOLD A. JOHNSON, Toledo (USA)

I. INTRODUCTION

In the fall of 1957 the writer began a Ph.D. dissertation under the direction
of E. B. Leach investigating what Kan [1] was to call direct and inverse
limits and what Freyd [2] was to call left and right roots (or reflections and
coreflections). The work was essentially complete by the time Kan’s article
(1} on adjoint functors appeared in the Transactions during the following
year. Due to circumstances beyond the control of the writer there was a delay
in the publication of his results and in the meantime some of the results such
as the factorization of left roots into differences of products were published

- independently by other writers [2]. However, since the results in which the
dissertation culminates have not to the writer’s knowledge yet appeared it
seemed to him worthwhile to write them up for publication, adapting for this
purpose the elegant language invented by Kan.

The main tool of this paper is the concept suggested by E. B. Leach of a rela-
tive reflection: an object X in a category % is a relative reflection of an object
X in B with respect to o functor G- of — B provided there is a morphism X — X
in # satisfying the universal mapping property with respect to GA for all
objects 4 in 7. We define a category & of diagrams over a category &7,
in which the diagrams are not necessarily of the same form, and imbed <o
as a subcategory of 2 by means of a functor J: o - 9. If g diagram D has
a subdiagram functor D': A" — D (see below) and if L: & — o is a reflector

* {2] then LD’ is a relative reflection of D. Since a reflection of relative reflection
of D is a reflection of D (and dually for coreflections) a procedure is obtained
for the iteration of reflections and coreflections which leads naturally to the
investigation of the associativity, “commutativity, and distributivity of
reflectors and coreflectors. Categories Dr(M) of diagrams of the form D:
# >/ are defined in which for each morphism « in .#, Du is constrained
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to lie in a class M(«) of morphisms in 7. Reflectors and coreflectors on these
categories are studied. Examples are sums, products, quotients, subobjects,
etc. Given functors @ : 9((M)— o and ¥ : D4(M') > o/ and a diagram D
in Dixy(MxM') we define subdiagram functors Di: .£,— 2,(M’) and Ds :
F —>Z1(M) and define the compositions @ ¥ : Dps(M X M')— o/ and
VO : Drxy(Mx M) by setting (PP)D=P(PD;) and (DV¥)D =
= (¥ Dy). If Y(P Dy) is isomorphic to (¥ Dy)) then & and ¥ are said to
commute even though @ and ¥ have different domains. Invariance of reflectors
and coreflectors under one another is defined and it is shown that one reflector
@ : 9(M)—+ o/ commutes with another ¥: Zs(M')— o/ provided each is
invariant under the other. There is a dual result on coreflectors. If @ : 2r(M) —
- & is a coreflector and ¥ : D ;(M') — o is a reflector such that each is
invariant under the other then @ does not generally commute with ¥ but
there exists a natural transformation ¥ @ — @ V. The latter specializes to the
celebrated minimax theorem and may be further specialized to the one-sided
distributive law (z . ) + (z.2) < = . (y + 2) of lattice theory [3].

II. RELATIVE REFLECTIONS

Definition. Let G & ~> B be a functor and let X — X be a morphism in B.
Suppose that for any morphism X — QA in which A is an object in of there
exists a unique morphism X —2—> QA such that

X——X

Y

GA

commutes. Then X — X is a relative reflection and X is a relative reflection of X
(both with respect to G). When there exists an object X' and a unique morphism
X' > A in o such that § = Gu then the relative reflection is absolute: in this
case X' is called a reflection of X and X — GX' is called a reflection (both with
respect to G).

Relative reflections with respect to a functor G: o — & form a subcategory of A.
A reflection of a relative reflection of an object X is a reflection of X. Furthermore
if X — X is a relative reflection and X — GX' is a reflection then there is a unique
morphism X > GX' such that (1) the diagram

. K.III..VM

\J

X’
commautes and (2) the morphism X > GX' is a reflection.
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Recall that a diagram D over a category <7 is a functor D: . — &/ in which
# is a small category [1]. If D: £ — o and D': ' - of are diagrams, then
a mapping v: D — D' consists of a functor 71: £ - 4 onto & ‘, together with
a natural transformation ta: D — D'ty. We will write 7 — (71, 72). (If 7 is
obvious we will write only 7. instead of (71, 72).) A morphism equal to 7.
for some 1 in . is called a component of the mapping.

Definition. If o: F— F' is a natural transformation between functors F, F':
X~ B and if G: € —> X is a functor then o G- FG — F'G is the natural trans-
Jormation defined by (¢ G)c = a(Gc) for each object ¢ in €.

Definition. If v": D' — D" is another mapping then v'v: D — D" is defined by
(t'th = 111 and (T'7)2 = (zgm1)72. Consequently we obtain the category D of
diagrams over <.

There is an obvious imbedding functor J: o/ — 9 and under this imbedding
we may regard </ as a subcategory of 2. It follows that a reflector [2] F:
2P — A is a (direct) limit functor. By a reflection of a diagram D over o we
mean a reflection of D with respect to J. We will usually suppress mention of J
and identify objects 4 and morphisms a in .o with their corresponding diagrams
JA4 and Ja.

A mapping t: D> 4 in which 4 is an object of o7 consists of a family of
morphisms vi: Di - 4 indexed by objects in . such that for each morphism
« i—14' in £ the diagram

Dy —Da _ p;’

o) Te

commutes.

A category < has an opposite category /P in which the objects and mog-
phisms of &/ are the objects and morphisms of s7op but hom, (4, B) =
= hom® (B, 4) [4]. Moreover the product @ f of morphisms «, 8 in o7op
is defined by «° # = B whenever fa is a product in 7.

If D: /- of and D’: #' — of are diagrams then a comapping v: D-> D’
is a functor 1;: S —> & together with a natural transformation 75 : Dy > D',
In effect a comapping has the same definition as a mapping except that domain
and range are interchanged and components of 7 from </ are replaced by
morphisms from /°p, The converse category D* of diagrams is the category
whose objects are diagrams and whose morphisms are comappings. Coreflections
are defined using comappings.
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A comapping 7: 4~ D in which 4 is an object in o and D: J > & is
a diagram consists of a family of morphisms 7i: A — Di indexed by objects
in.# such that for each morphism a: ¢ — ¢’ in # the diagram

pi—D2 o pi’
A /o
A

Definition. Let P: & — X be a functor. A functor induced category P71 ()
is defined as follows: the objects are diagrams Ex: Ik — S one for each object
K in o and there corresponds to each morphism p: K — K" in A" a mapping
(Fg, 05): Ex - Ex: . The functor induced category satisfies the properties:

(1) 4 morphism o in S is an image under Ex if and only if P = ex.

(2) Each morphism in J is the product of factors o such’ that o is either an
image under one of the Ex or a component of ¢ mapping (Fg, og) such that
Po = . : .

(3) Ek is an imbedding, i. e. is one-to-one into.

(4) (F3, 0g) is an identity if and only if B is an identity.

(6) (Fp,» 0p,) Fi,» 05.) = Fpapis Tpups)- ‘

If such a category P-1() exists then the mapping P11 A" — P1(X),

defined by P-1K = Eg for each object K in X “and P = (Fg, ap) for

each morphism g in ¢, is by (4) and (5) a functor. The functor P induces

a factorization of J into subcategories and morphisms between the subcate-

gories. Thus P-1: % —> P~1(X) may be called a factorization of S.

Definition. Let D: . — o be a diagram and let D : P~1 (A)— D bea Sfunctor
such that D(Eg) = DEx and D(Fs, og) = (Fg, Dog). Thus D is a restriction
of D to the subcategories of J in Pt (o) and to the mappings between the sub-
categories. Let D' = DP~: A" — D then D'K = DP-1K = DEx : Sg—~ S
is a diagram for each object K in A . D' is called a subdiagram functor of D and
the functor P is a projection functor of D.

Theorem 1. Suppose L: D —~ o is a reflector and x: By — L is the natural
transformation induced by L, [1] (called a front. adjunction by Mac Lane [4]).
Let D: % — of be a diagram and let D': A — D be a subdiagram functor of D.
If P : F — X is a projection functor of D" and D — LD'P is the transformation
such that tEx = »(D'k) for each object k in A then (P, T): D— LD’ is a relative
reflection. (By the object L(DEy) of S, the range-object of x(D'k), is here meant
the diagram JL(DEyx) where J: of — 9D is the chosen imbedding of & in D.)

Proof. In order to establish that the transformation z: D — LD'P is natural
let «: i — 4’ be a morphism in .#. There are two cases to consider.

commutes.
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Case 1. There exists a morphism «': j — j' in £ such that Exa’ = « for some
object k& in . Tt follows that (D'k)e’ = (DEx)a’ = Da and since the natural
transformation x(DEy) : DEx —» L(DEx) may be regarded as a mapping, the
diagram

(DEgla’

(DE)j ———2———(DER)j”
[roep )i’
[xtoed]i
L(DE)

commutes. But L(DEy) = L(D'k) = L(D'Pi) = L(D'Pi’) and Po = e and
consequently the diagram ,

Da

pi———————=Di’

T ™

PU.R LD'Pa

Lo’
commutes.
Case 2. P = p and « is a component of (Fg, o), 1. e. there exists j such that

o j = a. Let k and k' be objects in " such that Exj = ¢ and Epj’ = ¢'. The
diagram

{Fg,D84) -
a:..v,mv.s\g

L(DE,:)

commutes and consequently for each j in S the diagram

- (Dg,df
(DEJ)j —~—L e (0, )

[ktog))i [ktog, ]

.:m .cqsy
P:umt II:'-I'.P«ON»Q
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commutes. But

L(DEy) = LDk = LDPi
L(DEy) = L{D'¥) = LDPi,
LD'Pa = LDf = L(Fs, Dog),

and therefore the diagram

pi__ Da _pi
T e’
LD Pa

LDPi ————LDPs’

commutes.

Since all morphisms « in .# are producis of morphisms of the types in cases
1 and 2 it follows that 7 is natural.

Now let 7: D> A be an arbitrary mapping into 7. For each object k in
A there is a unique morphism wk such that

K(D'k)

D'k ="t [ (D'k)

RERN wk

A

commutes.
The transformation w: LD’ — A is a mapping because if §: £ — k' is a mor-
phism in /" then LD’ is the unique morphism such that

K(D'k) / \ KID'%")
;;/

L%’}

LDk}

commutes. Since #(D'k) = tEy it follows from diagram (1) that w : LD -
— A is tne unique mapping such that

Ull-.ﬂll'ﬁc.

Sk

commutes.
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Theorem 1 can be readily applied to proving known theorems such as the
associativity of sums and products and that reflections of diagrams may be
factored into a summation followed by a ‘“‘quotient’* and that coreflections may
be factored into a multiplication followed by a “difference®. (This may be
seen from the following.)

Definition. .of s the largest discrete subcategory of the category /. (A4 discrete
category [2] is a category whose only morphisms are identities.)

_ Definition. If D: . — o/ is a diagram and E: J > is an injection then D:
S — o/ is the family defined by D = DE. (A family (Di),.; is a diagram D:
4 — o/ in which £ is a discrete category). Thus D is the largest family in D.

We finally show that every diagram D: .# — &/ has a subdiagram functor
D': A — @ of the form A: D— D in which 4 is a family of mappings. Such
a functor may be called an object-map factorization.

Let E: ¢ — . be an injection and for each morphism o: ¢ — ¢’ in .# define
(Fu«, 0a): E— E as a mapping having o« as a component and whose other
components are identity morphisms. Let £~ be the category whose only object
mm@ and whose morphisms are mappings (Fy, oa): £ — E. Define Pi = E and

== (Fy, 04) for each object ¢ and each EonEmE a«in S, Define D: A > 2
_o% mngm D'E = D and D'Po = (Fq, Day): D — D. Then D is of the form 4:
D — D in which 4 is a family of mappings D'Px each of which consists of
Da together with identity morphisms.

IIL. »COMMUTATIVITY” OF REFLECTORS AND COREFLECTORS

In the category of R-modules in which R is a commutative ring with identity
the direct sum functor @ has as its domain families of modules and the quotient
functor ¥ has as its domain pairs of modules of which, one is a submodule of
the other. Tt is known that “the quotient of the sums is the sum of the quo-
tients‘ so that in a sense @ “commutes with ¥ although @ and ¥ have dif-
ferent domains. In this section we characterize such functors in the cases they
may be regarded as reflectors and coreflectors and define the composition
of such functors relative to which they commute.

Given a diagram D: .# X ¢ — o/ there correspond subdiagram functors
of the forms Di: > 2 and Dy: ¢ — . A theorem on the commutativity
of reflectors and coreflectors will be proved by applying Theorem 1 to these
functors.

Let E;: #— % X ¢ be the imbedding functor defined by Hi = (i, j),
Ejo = {«, ¢5) and let E: ¢ > .9 x ¢ be the imbedding functor defined by
Eij = (3, §), Et = (e, B) for objects ¢ in #, j in ¢ and morphisms « in .,
B in #. Since the Et are all of the same form, a mapping or a comapping K —
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-> E* may be regarded as a natural transformation. For each morphism
o i— 1 in . let o%: B > E¥ be the transformation defined by (o%)j = (, ¢)
for each object j in _#. To show that ¢ is natural let f: j - j' be a morphism
in #. Then Eif = (e:, f) and E¥ = (es-, f) and the diagram
@.j Tlﬂmg‘va. il
( R.{_. _Eb.e
(el iy

commutes. The natural transformation ¢*: Ei - E¢ induces a natural trans-
formation Do%: DE! — DE¢. Define a functor Di: J > 2 by setting D1 ¢ =
= DEt and Dia = Do* for each object ¢ and each morphism « in £,

A similar procedure generates a functor Ds: ¢ — . For each morphism S
j—j"in # and for each object i in S we set o5t = (e, B) and then define
Dsf = Dog and set Dyj = DE; for each object j in ¢.

If & 4> ¢’ is a morphism in # and B: j—> j' is a morphism in # then

(@ B) = (« er) O (e, B)
Epa 0 ogi .
= 0%’ o Eif.

1t follows that each morphism («, ) in # X £ is the product of two factors
one of which is an image under Ej and the other is a component of one the
mappings #; > Ey, and furthermore one of them is an image under B¢ and
the other is a component of a mapping Ei — E¥. Conséquently Di: I>D
and Dy: ¢ — 2 are subdiagram functors. .

Corresponding to the subdiagram functors are the projection functors Pi:
I X §—~F and Po: % ¢ ¢. It follows from Theorem 1 and its dual
that if L: 9@ — o is a reflector or a coreflector then L{LD) is isomorphic to
L(LD;). We now apply this result to the study of the commutativity of re-
flectors and coreflectors.

Definition. Let & be a small category, let o7 be a category and let Dr be the
category of diagrams of the form D: J — of. For every morphism « n S let
M{(«) be a class of morphisms in o such that if « is an identity then M(x) is the
class of identity morphisms in /. Define Di(M) as the full subcategory of Z1
such that Da belongs to M(«) for every morphism o in S

Examples. 1. If . is a discrete category then Dr(M) = Dr and a reflector
D1(M) - s is a sum functor and a coreflector Z(M) — +/ is a product functor.

2. Let & be the category of modules over a commutative ring B with identity
and let # be a category consisting of two objects ¢ and ¢’ (with corresponding
identities) and two morphisms a: §—>4’ and o't ¢ >1'. Let M(«) consist of
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Hwoncon A. A., Pefaenmopu u ropedhaermopet na duazpammaz, Mat.-fyz. casop. 16
(1966), 309—319. {Anra.)

OnpefesAlOTcA WOHATHA OTHOCUTENbHON pediiexcnsn ¥ HmOEEMArpaMMHBIX QYHKTOPOB.
TlokasuBaercs, uro ecaun D’ : A — &P — nopgguarpamMmubiii §yaxrop u L : @ — & —
pedaertop, To LD’ ecrp orHocurensnasa pedmexcua D. IlpoBogurcsa oGuee ncciepoBanue
HOMMYTATUBHOCTY (YHKTOPOB HA [UArpaMMax HmogoO6HO TOMY KaK, HAIPUMEp, HPH KOMMY-
TATMBHOCTH IIPAMBIX CYMM € YACTHLIMM B TEODHH MOAYJefi HAal KOIBLOM.

Pueuan B., 3amemra o speoduunocmu, Mat.-fyz. dasop. 16 (1966), 320—323. (Aura.)
B crarbe uccleyeTcA KPUTEPHil SPrORMYHOCTM, NOKA3aHHHI B opHO# crarbe P. B.
Ilpeiicenmopdepa u B. B. Pooca. ABTOp XOKA3RBAET, YTO B 3TOM KPUTEPHH MOKHO 3aMEHATH
YCI0BHE COXPAHNMOCTH MepHl 6osee cHAOBIM yCIOBHEM HECHMMAECMOCTH. :

HO:oms:w;.ﬁmEoS;mExm:azzmogex%e::::F\Soaoo.i:zmmczmwwm:x:zskgaﬁ.@-
eamu, Mat.-fyz. Gasop. 16 (1966), 324—328. {Hemenr.) : ‘

B craree maerca muas 0,088 < g < 0,169 BepxHee orpaHUYeHUe MUHUMAJLHOM MAOTHOCTY
TOKPHITHA IBKIKKOBOM IIIOCKOCTH KPYTaMu, PAHyCH KOTOPHX B3ATH u3 uHtepsama (q,1).

Ary6nn f., Hedexundoss cevenus € npamom npoussedenult YACMUUHO YNopAOOUeHHHT
epynn, Mat.-fyz. &asop. I6 (1966), 329—336. (Hemeux.)

Ilycre E{G) — nemexMHIOBO pacuiMpeHne HANPABIGHHON BIIOJHE HEN03aMKHYTOM rpym-
ue G. JlokassiBaercs Teopema: Ecim G — NojHOe MpAMOe NPOU3BENEHUE YACTHIHO YHO-
pAgoveHHHX rpynn G; (i € I), To E(G) ABIAETCA MOJHHIM NPAMBIM NDOU3BEEHNEM CTPYK-
TYpHO ymopsagoueHunx rpynn E(Gi) (i € I).

Bana 1., Cucmemur Puramu co cosnadaoupumi wiu smHumbimi Hyrnoamenmasbmblmie
AUHUAMY 1a aunelinamoti noseprrocmu, Mat.-fyz. Casop. 16 (1966}, 337—348. (Hemenk.)

VcemenyoTca cBOMCTBA KBAAPATHYHEIX M AQKCHANBHBIX cucTeM Purari, KOTOpHE MMEIOT
Baj[aHHBIE COBIAJAION[HE MM MHUMBIEe (yHAAMEHTAaJbHbHIE JMHWM, HA AWHEHIATON Hepas-
BEPTHBAWWIENCA TOBEPXHOCTH B IPOEKTUBHOM HpOCTpaHCTBe Ps.

Poca A., O yuriuveckuz paaonceHusr noaroeo epapa na (4dm-+2)-yeossruxu, Mat.-fyz.
dasop. 16 (1966), 349—352 (Anru.)

B crarhe JaeTcA MOCTpOeHUE LMKIMYECKOTO PABNOMEHUA HOJIHOTO rpada ¢ 2kp + 1
BepIIMHAME HA p-YFOJILHAKK A Ciiyuas p = 2 (mod 4},

Kouur A., O -npeobpasosanurz ammucummempuueckuz epafios, Mat.-fyz. casop. 16
{1966), 353-—356. (CioBank.; pes. aHri.)

Tpueojurcs meo6xoquMoe ¥ TOCTATOYHOE YCIOBUE HIA TOro, YTOOH 3aTaHHEIA aHTU-
cuMMerpuyeckuii rpad Ges mereds MOMcHO OHIIO Ipeo0pasoBaTe ¢ MOMOMIBIO §-mpeobpaso-
BaHUil B NPOU3BOJIBHBLA IPad ¢ TeM e MHOMECTBOM BEPUIMH K C TEMM Ke BHeIIHIMH M
BHYTPEHHUMM TOJIyCTETEHAM OTHAEAbHBIX BepIIMH; IOX J-mpeoOpasoBaHMeM IOHHMAETCA
ofpamenye HampapieHnsa pebep HEKOTOPOTO HUKIIA AMUHBL 3.



Suam II., Obobuenue 0droeo pesyamama us meopuu wuces, Mat.-fyz. Easop. 16 (1966),
357—361. (Anra.)

Crarba saruMaerca 0606menneM peayararop M. lypa o pasnoxenny HATYPANHBIX YUCETL
B MHOMKECTBA, HE CONepHalie CyMMy CBONX 3JIEMEHTOB, 8 TAKHEe IPUMEHEHNE STUX pesyl-
TATOB NMPY PelleHMN N3BECTHOU 3alayy u3 Teopuu rpados.

Cusemnt 3., Tyuer Y., Iffermusnocms AdepHolx IMyabcuil npU HUIKUT MEMNEDPAMYPIT,
Mat.-fyz. éasop. 16 {1966), 362—365. (Pycek.)

B craThe MCCHEYIOTCA MOHMBANMOHHLE OGMEHB TPEKOB YACTHI B ANEPHHX dororpadu-
yeckux amyascnax HUHOU BP-2, oxnakAeHHHX [0 TeMOEPATYPH HUJKOTO a30Ta U TeJA.

Nayauuu-Torosa B., Jufpysus yurka é npumeceHblr KPUCALAAT NaCl, Mat.-fyz.
&asop. 16 (1966), 366—376. (Anrax.)

CTaTbd COMEPUT HOKA3ATENHCTBO KOHIEHTPALUOHHOH HE3ABACUMOCTH roaduimenta
auddysun 1muEKa B mpuMecHHX Kpmcraamax NaCl, a rakmxe ananmns nuddysun Ges rpa-
muenTa Baxauncufi. IIpuBoRATCA CpaBHEHME U30TEPM A NaCl + CaCle u NaCl 4 CdCiz.

MATEMATICEO-FYZIKALNY CASOPIS SAV, 16, 4, 1966

SYNOPSES

Johnson A. A., Reflectors and corefleciors on diagrams, Mat.-fyz. éasop. 16 (1966),
309—319. (English.)

The concepts of relative reflection and subdiagram functors are defined and it is
shown that if D’ : o - @ is a subdiagram functor and L: 2 -+ & is a reflector then
LD’ is a relative reflection of D. A general investigation is made of the “commutativity
of functors on diagrams such as occurs, for example, in the “commutativity‘* of direct
sums with quotients in theory of modules over a ring.

Rieéan B., Note on ergodicity, Mat.-fyz. éasop. 16 (1966), 320—323. (English.)

The article deals with a criterion of ergodicity demonstrated in an article of R. W.
Preisendorfer and B. W. Roos. The author proves that in the criterion the assumption
of measure preservation can be replaced by the weaker assumption of incompressibility.

Jucovié E., Ledo J., A4 note on covering of the plane by non-congruent circles, Mat.-fyz.
Gasop. 16 (1966), 324—328. {(German.)

In this paper the upper bound of the minimal covering density of the Euclidean plane
with eircles of which radii are from the interval (g, 1), 0,088 < ¢ < 0,169, is given.

Jakubik J., The Dedekind cuts in the direct product of partially ordered groups, Mat.-
fyz. Gasop. 16 (1966), 329—336. (German.) -

Let G be s directed group which is completely integrally closed and let E(G) be the
Dedekind extension of @. Main result: If @ is the complete direct product of partially
ordered groups G; (i € I), then E(G) is the complete direct product of the lattice-ordered
groups E(Gi).

Vala J., Riccati’s families with coincident or tmaginary fundamental curves on the ruled
surface, Mat.-fyz. Sasop. 16 (1966), 337—348. (German.)

This paper deals with the properties of the quadratic and the axial Riccati’s families
with given coincident or imaginary fundamental curves on the nondevelopable ruled
surface in a projective space Pjs.

Rosa A., On cyclic decompositions of the complete graph into (4m - 2)-gons, Mat.-fyz.
tasop. 16 (1966), 340—352. (English.}

In the paper a cyeclic decomposition of the complete graph with 2kp - 1 vertices into
p-gons in the case p = 2 (mod 4} is constructed.

Kotzig A., On d-transformations of antisymmetric graphs, Mat.-fyz. dasop. 16 (1966),
353—356. (Slovak, English summary.)

The paper deduces the necessary and sufficient condition for the possibility of changing
a given antisymmetric graph without loops into any graph with the same set of vertices
and same outward and inward demi-degrees of the vertices by a d-transformations,
i. e. by the successive turning of orientation of edges of some cycle of the length 3.

Zném 8., Generalisation of a number-theoretical problem, Mat.-fyz. dasop. 16 (1966),
357—361. (English.)



The article contains the generalisation of Schur’s results regarding the splitting of natural
numbers in sum-free sets and application of results by solving of a known problem on
colouring of edges of complete graphs.

Sile E., Tuéek J., Efficiency of nuclear emulsions under low temperatures, Mat.-fyz.
dasop. 16 (1966), 362——365. (Russian.)

In this paper we have examined the changes of the ionization of particles tracks in
bﬁo_mma photographic emulsions NIKFI BR-2, cooled on the temperature of liquid
nitrogen and helium. e

Pauliny-Téthova V., Diffusion of zinc in doped NaCl crystals. Mat.-fyz. Easop. 16
(1966), 366—-376. (English.)

In this paper the concentration independence of the diffusion coefficient of zine in
doped NaCl crystals has been proved and diffusion without vacancy gradient has been

analyzed. The comparison of the diffusion isotherms for NaCl 4 CaCls and NaCl + CdCl,
has been done.

monomorphisms in &/ and let M(«") consist of trivial homomorphisms so that
D«': Di->Di' maps Di onto the zero element of Di’. Then a reflector @:
D1(M)—> o is a quotient functor and ®D = Di!|Di for every diagram D in
Di(M).

Definition. Let @: D(M) > o and ¥: Dy(M')— 57 be reflectors or coreflectors.
Then ¥ is invariant under @ (or ®-invariant) provided for every morphism T
in Di(M) the morphism Pt is in class M (@) of ¥ whenever every component
of © is in M'(«).

Examples. 3. Sum and product functors are invariant under any reflector
of coreflector @: Dy(M)— o since as shown in example 1 the classes M'(«)
of sum and product functors contain only identities. .

4. A quotient functor as in example 2 is direct sum invariant. For if z:
D -> D' is a morphism in 9y and 7¢ is a monomorphism for each object ¢ in
# then > 7i is a monomorphism and if 74 is trivial for each object ¢ in £ then

el :
> i is trivial.
el

Definition. Let Drxy (MXM') be the full subcategory of Prxa such that
D(«, €) € M(a), D(e’, ) € M'(B) whenever « (or B) is a morphism in F (or F)
and e (or ¢') is an identity in I (7 respectively). Let D: # X ¢ -> o beadiagram
in Drxs(M X M') and let Dy: S — D and Dy F — D be the subdiagram functors
of D as defined above. Let D1: F — D,(M') and Doz F - Di(M) be restrictions
of D1 and D and suppose : D1(M)— o and ¥: D M')— A are funclors.
Define the composition P¥: Dix HAM X M) and the composition ¥:
Dixg(Mx M)~ o by setting (P¥) D= Dy) and ($®) D = V(D Ds).

Theorem 2. If @ and ¥ are reflectors then under the composition just defined
& and ¥ commule provided each is invariant under the other.

Proof. Since @ is W-invariant it follows that ¥ Dy: £ - & is a diagram in
2(M) and since ¥ is P-invariant it follows that ®Dy: ¢ - o is a diagram
in 24(M’). Furthermore Y(PD,) is isomorphic to $(WD,) since @ and ¥ are
reflectors.

Examples. 5. In the category of R-modules direct sums commute with
quotients. However, quotients are not self-invariant: otherwise we should be
able to prove that if 4 CB CG and if 4 CC C@ then (G/C)/(B[A) is
isomorphic to (G/B)/(C/A) using the diagram

c=—==¢

X b,
L T . r:?
j3

A mum
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in which the j's are monomorphisms and the t's are trivial. In case C = 4
the monomorphisms are preserved under quotients and it follows that (G/4)/
/(B|A) is isomorphic to G/B.

By a trivial modification of the proof of Theorem 2 it follows that coreflectors
®: D(M)— A and V: Dy(M') —~ A commute provided each is invariant under
the other.

Definition. Morphisms between diagrams may be generalized as follows:
let 2 be a small category and let D: I — o and D' § — A be diagrams such that
there are projectors P A" — S and P': A — F onto S and onto §: thena A -
morphism D - D' is a natural transformation DP—> D'P'. A mapping D— D’
is an F-morphism and a comapping is a F -morphism.

Let ®: 91(M)—~ o be a coreflector and let ¥ Di(M’) —~ & be a reflector
and suppose that each is invariant under the other. Let D: F X ¢ — o/ bea
diagram in Drxs (M XM'). As in the proof of Theorem 2 YD, S > A isa
diagram in D¢(M) and ®Ds: # — o is a diagram in D (M.

There is a natural transformation : D — ¥D.P; that defines a relative
reflection D — ¥D; and there is a natural transformation 7': ®DoPy — D that
defines a relative coreflection ®Dp — D. Consequently the natural transfor-
mation 7¢': ®DsPs — WD Py is an £ X _#-morphism @Dz > ¥D1. Hence for
every object ¢ in & there is a mapping (z7')E¢: @Dz — YD, and for every
object jin 7 there is a comapping (v7')E;: @Dyj—> ¥Dy. Let 7': @Dz~ (FO)D
be a reflection and let zz: (PW)D — ¥D1 be a coreflection. Then obviously there
exist unique morphisms w'é and wj for each object ¢ in # and j in # that makes
the diagrams

B\.ﬁ@, ww
o

commutative.
Since the diagram

4] w4
(Y90
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commutes it follows that 't (P®)D > ¥D, is a comapping. Similarly w:
@Dy~ (PW)D is a mapping.
We now show that there exists a unique morphism » such that the diagram

D

A

S I O
]wu \

commutes. The existence of such a morphism follows from the existence of
a unique morphism v such that vz’ = w. This yields vz’
therefore 7y — ', which establishes commutativity.

If the natural transformation W@ — @ were an equivalence then reflection
functors would commute naturally with coreflection funcvors provided that
each is invariant under the other. However, there are counterexamples such
as (disjoint) sums and products in the category of sets. Nonetheless, we obtain
a generalization of the celebrated minimax inequality: namely that there is

@b@azam_ﬁapsmmowB@ewonSlv:MmH.oESEor%ormqmmm@m@oom&o@mm
jexiel  ielje .‘
the one-sided distributive law (. ¢) + (% . 2) == . (y + 2). For the cases in which
sum and product are lattice operations these reduce to the usual laws. [3]

= mew = rr’ and
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