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ON THE CALCULATION OF GEOELECTRIC RESISTIVITY
ANOMALIES OF INFINITE CIRCULAR HALF-CYLINDERS

SILVESTER KRAJCOVIC, Bratislava

In the papers [1], [2] formulae have been deduced for the calculation of the
geoelectric resistivity anomalies for the case of the circular infinite cylinder
embedded in infinite space and for the case of the circular coaxial haif-cylinders
embedded in infinite half-space, using a point source of steady electric current.
The deduced formulae have a form of infinite sums of improper integrals
which cannot be evaluated by known formulae for improper integrals of
compound. expressions of Bessel functions, but it is necessary to determine
their numerical calculation, which is one of the purposes of this paper.

Let us have an infinite long circular half-cylinder the resistivity of which
is g2 and the radius of which is 7o = 1 and which is embedded in infinite
homogeneous and isotropic half-space, ,
the resistivity of which is denoted by 0,
(fig. 1). We are to calculate numerica-
lly the sum of improper integrals for
such a case where the souce electrode
A is more removed than the potential

Fig. 1.

electrode M and both electrodes lie on the straight line running through the
origin of the cylindrical coordinate system and being perpendicular to the
longitudinal axis of the half-cylinder. Then we have for the calculation of the
potential from [2] the equation:
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where I,(x) = i~ ,(i2); Ka(z) = Ms.gimmv?.ar I,(x); K,(x) are Bessel func-
tions and their derivatives with respect to argument z, while r, ¢, 2; a, @, 2
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are cylindrical coordinates of the potential or the source point respectively,
J is the intensity of the source current. The first term in eq. (1) expresses the
potential of the point source embedded in infinite half-space and it will be
calculated by an elementary formula. The anomalous potential is expressed
by the second term of equation (1) and for the chosen arrangement of the
electrodes will be simplified into the form:
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which will be the subject of our study.
We may simplify the equation (2) by taking into consideration the formulae.
of [3]:
(3) I_p(x) = In(2); K (@) = Ku(z); n=0, 1,2 ..,
by means of which we have: .

(2) U*(r, 0, 0) = dt,
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The following parameters were chosen for the calculation of the anomalous
potential: rg = 1; r = 1,2; g = 2,4; 3,6; 4,8; 6,0; o1 = 10m; o2 = 20 Om;
50 Om; 100 Qm; 200 Qm; 0,05 Lm; 0,02 Om; 0,01 Qm; 0,005 Qm. Further
we have put — for the sake of simplicity — J = 272 amperes. We have chosen

(4) U*(r, 0,0) = dt +

the following values of the parameter ¢ for the numerical computation of

integrals: 0,1; 0,2; 0,3; 0.4; 0,5; 0,6; 0,7; 0,8; 0,9; 1,0; 2,0; 3,0; 4,0; 5,0; 6,0.
Instead of an infinite sum of integrals we have considered only the sum of the
first eight terms. We were able to simplify in this way because the subintegral
functions have already for ¢t — 6 very small values and the series of thus
defined terms converges rapidly. Hence we have introduced into the numerical
calculation of integrals arranged in tables for parameters g; = 20 Qm; g, =

= 10m; a = 2,4 the following approximating equations:
6
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For numerical calculation of the given integrals we used the functions:

Wm&ar Ky(2); ...; Kofx); Io(z); Ii(x); ... I7(x) and their first derivatives K, (x);
(%),

The values of the functions exp (—=x)lo(z); exp (—2)1(x); exp x Ko(x);
exp z Ki(x) by means of which we define easily Io(z); Iy(z); Ko(z); Ky(x)
are tabulated in [4] with accuracy to 7 decimal places and with an interpolation
error 0,02 in the whole interval 0,00 < x < 16,00. For the calculation of the
values of the functions of higher orders we have used recurrence formulae:

2n 2n
Tna(@) — — In(x) = 2+1(2);  Kpy(x) + Mﬁi&v = Kn,1(),

z
and we have calculated with all decimal places given in the tables and then
we have rounded off the results to 5 decimal places. We don't give the respective
tabulation for the sake of brevity. The derivatives of Bessel functions
Io(@): I (); ...; I}(x); Ky(z); Ky(=); ...; K (x) were to be calculated yet. This
was accomplished in an analogical way by means of recurrence formulae:
Lf@) = Ii2);  Ifw) = }{Ins(z) — Lnia(#)]

Ko@) = —Ki(z); K(z) = —HKna(@) + Knia(@)]. .
Next we have calculated the values of Bessel functions and those of their
derivatives for small (x = 0,02) or for great (r = 10,0) values respectively
by the formulae:
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Thus we have obtained all necessary data and then we tabulated for the
above chosen parameters. Finally we have evaluated the ratio of the anomalous
potential to the potential in the homogeneous half — space and then arranged
the results into tab. 1, where we denote by g1 the resistivity of the half-space
and by gz the resistivity of the half-cylindrical embedded body.

CONCLUSION

If we take into account the obtained results we may state that the decrease
in the values of geoelectrical anomalies with increasing distance of the source
electrode and potential electrode for 01 > g2 is very slow. For g; = 200 LOm;
02 = 1 Om the maximal value of the anomaly is about 24 % and its minimal
value about 20 9. Though in the case when 01 < p2 the decrease of the values
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Table 1

o-=10m a = 24 a = 3,6 “ a = 4,8 M a = 6,0
g2 = 200,000 Qm 23,9 23,2 22,9 20,3
¢z = 100,000 Qm 22,5 21,9 20,0 17,8
oz = 50,600 Om 20,5 19,2 17,0 14,9
0z = 20,000 Om 16,4 15,2 13,8 11,3
ez = 0,005 Qm 9,3 7,0 4,8 3,9
02 = 0,010 Qm 9,8 7,7 6,3 5,0
ez = 0,020 Qm 9,6 8,2 6,2 4,7
02 = 0,050 Om 9,3 8,1 5,9 4,7

of anomalies with increasing distance of the source and potential electrode
is greater in this case the maximum anomaly is 10 %, the minimum anomaly
is 5 %, but the anomalies are practically not meausurable. Besides we find
that for g; < g2 the magnitude of anomaly for different resistivities of the
half-cylindrical body varies only insignificantly. The results obtained by the
-above analysis may be summed up as follows:

L. if the resistivity of the half-cylindrical embedded body is — in comparison
with resistivity of the surroundings — greater but does-not reach tenfold
value of the resistivity of the surroundings, we may — with an external source —
meglect the influence of the half-cylindrical embedded body.

2. if the resistivity of the half-cylindrical embedded body is smaller — even
ten times — we may neglect the influence of the embedded body.

3. in the other cases we must take into account the influence of the half-
cylindrical embedded body whereby we must realize that this influence
-decreases very slowly with increasing distance of source and potential electrodes.
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