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CYCLES IN A COMPLETE GRAPH ORIENTED
IN E QUILIBRIUM

ANTON KOTZIG, Bratislava

Throughout this paper we shall call a complete graph with m vertices,
oriented in equilibrium, 2 o(m)-graph. (According to {1} 2 graph is oriented
in equilibrium if for each of its vertices the following holds: the number of
edges outgoing from the vertex v is equal to the number of edges incoming
at the vertex v.) If we use the terminology introduced by Berge in [2],
a o(m)-graph is a conaplete antisymmetrie graph wherein each vertex has
an equal inward demi-degree and outward demidegree. Since according to
definition a p(m)-graph is complete and oriented in equilibrium, it must be
a regular graph of an even degree and thus we have m = | (mod 2).

Remark 1. It would seem that with n given, all o(2n + 1)-graphs are
isomorphic. This is the case only with n = 1 and n = 2. Fig. 1 represents

Fig. L.

three different kinds of o(7)-graphs. We can easily prove that any o(7)-graph
is isomorphic with exactly one of these three graphs. The answer to the follow-
ing problem is not known to the author of the present paper: How many
different mutually non-isomorphic o(2n -+ 1)-graphs do there exist for each
given n > 3*

Let z be any vertex of a o(2n + 1)-graph ¢. We shall use the symbol P(x)
(or Q(z)) for denoting the sets of those vertices from G from which in the
graph G the edge is incoming at the vertex z (or outgoing from it, respectively);
by |P(x)| or |@(x)| resp. we shall denote the number of its elements. 1t follows

175



directly from the definition of a o(2n + 1)-graph and the sets P(z), @(x) that
for any vertex x we have: |P(x)| = @) =

Theorem 1. Let G be any o(2n + 1)-graph and h any of its edges. In the graph
there exists at least one 3-cycle containing the edge k.

Proof. Let the edge k in G be oriented from its vertex u into its vertex v.
Let W be the set of all vertices of G not belonging into {u, v}. We obviously
have Pu) < W; Q(v) < W and since |W| =2n—1, |P()] =mn, Q)] =mn,
then necessarily P(u) N Qv) # 0.

Then, however, there is at least one vertex w e W belonging both to P(u)
and Q(v). The vertices u, v, w together with the edges joining these vertices
form the 3-cycle of @ containing h. This proves the theorem.

Theorem 2. Let v be any vertex of a o(2n + 1)-graph G. The number of different

2
Proof. Let us denote by P (or Q resp.) the complete subgraph of the graph @
containing all vertices and only vertices of the set P(v) (or the set @(v), resp.)
and all the edges joining these vertices. Let w be any vertex of the graph X
(where X € {G, P,Q}). Let us denote by ox(->w) the number of edges in
X incoming at w and by ox(w ) the number of edges in X outgoing from w.
Since |P(v)| = Q@) =n, we have: the number of edges of both P and @

Whence it follows:
> oplx ) = > op(—> ) = Mnqueﬁa —) HMQQ&¢ x) = va .

zeP zeP

. . n+1
3-cycles of graph G, contormang v, 15 exactly :

Besides we have: dg(x ) = gg{—x) =n for any vertex x ¢ G. Thus
it follows that:
> og(— x) =n?
zeP
and since there is no edge oriented from the vertex v into a vertex of P(v),
we mnecessarily have: the number of edges of G oriented from some vertex
Mv = As \M wv . Each of these edges and
only such an edge together with v and the two edges incident at it form a 3-cycle
containing v. This proves the theorem.
The subsequent corollary follows directly from Theorem 2:

of Q(v) at a vertex of P(v), is n? — A

Corollary 1. In any o(2n + 1)-graph the number of different 3-cycles is

WSS + )(n + Lin.
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Remark 2. We obtain the Hmm:_aM (2n + 1)(n + 1)n so that the number

2
multiplied by the number of vertices and divided by three. Berge in [2],
p. 145, Theorem 3 gives a more general formula for computing the number
of 3-cycles no orientation in equilibrium is required. In the special case of the
o(2n + 1)-graph its formula acquires the form given in Corollary 1.

Remark 3. While the number of 3-cycles in an o{2n -+ 1)-graph is not
dependent — with n given — on the choice of the g(2n 4+ 1)-graph, this does
not hold for 4-cycles. Thus in the graphs G., G, Gs given in Fig. 1 the number
of 4-cycles is 25, 28, 21, though each of these three graphs is a o(7)-graph.

Let C be any cycle of the o(2n + 1)-graph G. By the symbol S(C) denote
the set of vertices defined as follows: the vertex z € @G belongs to S(C) if anf
only if it does not belong to ¢ and when in the graph G there exist two such
edges that one of them is oriented from a vertex of C into z and the other
from z into a vertex of C. By the symbol P(C) (or Q(C), resp.), denote the
set of the vertices from @ that do not belong to C and have the property:
any edge from @ joining a vertex from P(C) (or a vertex from Q(C), resp.)
with the vertex of C is incoming at (or outgoing from) the vertex of C.

- ; Ly .
of the 3-cycles containing the chosen vertex, i.e. the number AS T v is

Lemma 1. Let C be any r-cycle of a ¢(2n + 1)-graph G where r < 2n + 1
and let w be any vertex from S(C). In the graph G there is at least one (r + 1)-
cycle C' containing both the vertex w and all vertices from C.

Proof. According to the definition of S(C) there is in G an edge {denote
it by k) oriented from a vertex v, of C into w. Denote the other vertices of C
by vz, vs, ..., ¥r i the order in which
we pass through them by proceeding
along the cycle C in the direction of the
orientation of its edges, starting from vs . .
From the definition of §(C) it also follows .
that among the vertices vz, v3, ..., ¥r .
there exists such a vertex that the edge
joining it with w is outgoing from w.
Let v5 be the onc from among such ver-
tices that has with the given notation
the smallest index. Then we necessa-
rily have: there exists an edge of G s *

oootljrsh
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oriented from Vs1 into w and an edge ¢ of G oriented from w into vs. I in C
we replace the edge oriented from v into vs by the edges f, g and by the
vertex w, we get a (r + 1)-cycle €’ of @ having the required properties (see
Fig. 2 — the edges from C are accentuated).

Definition. We shall say that the cycle C' from Lemma 1 arose by a A-extension
of the cycle C through the vertex w.

Lemma 2. Let C be any r-cycle of a o(2n + 1)-graph where r < 90 and let
vy be any vertex from C'; let w be any vertex from the set P(C) v Q(C). In G there
is at least one (r + 2)-cycle C” containing w and all vertices from C and in G
there exists a (r + 1)-cycle C* containing w and all vertices from C except the
vertex vr-

Proof. Denote the vertices of the cycle C — others than the vertex vy — by
the symbols v, wherei e {1,2, ..., 7 — 1} so that we proceed along the cycle C
in the direction of the orientation of its edges through its vertices in the
following order: vi, vz, ... Vr-ls vy. Let h; be the edge from G joining the
vertices w and vi. According to Theorem 1 there is in G at least one 3-cycle
containing the edge hi. Let z; be the third vertex of such a cycle, hence let i
be the vertex for which the following holds: w # %i F Vi.

According to the assumption w belongs to P(C) v Q(C). All edges
hi, hay oo Bor therefore are incoming at the vertex w or they are outgoing
from the vertex w. Hence for all 2¢ {1, 2, ..., r} we have: % does not belong
to (. If w belongs to P(C) then the sequence W, Vr; V1, -+ Vp1, Tr1 gives
the order in which we pass through the vertices of a (r 4 2)-cycle C" if we
proceed along it in the direction of the orientation of its edges. The sequence
W, Vi, --nns Vr-1y Tr-l determines in the given way 2 (r + 1)-cycle C*. The
cycles ¢, C* obviously have the required properties. If w belongs to @(C)
then the required cycle C" is given by the sequence w, %, V1, .- Ur and the
cycle C* by the sequence w, X1, V1, .-, U (S€0 Fig. 3). Hence the cycles C"
and C* with the required properties exist, Q.E.D.

V4 7] Ve 4 vy

. N
we P(C) we Q(C)
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Definition. We say that the cycle C" from Lemma 2 arose from the cycle C
by a p-extension through the vertex w, and we say that the cycle C* from the same
lemma arose from C through a v-extension through the vertex w with a simultaneous
replacement of the vertex vr.

Theorem 3. Let x,y be any two vertices of a o(2n + 1)-graph G and let k be
any number from the set {3,4, .-, oan 4+ 1}. In G there is at least one k-cycle
containing both vertices x and y.

Proof. According to Theorem 1 there is in & a 3-cycle containing an edge
joining the vertices 2, Y. Hence for k = 3 the theorem holds. Let us prove
the following: If the theorem holds for k =7 (where 7 is a natural number,
3 < r < 2n), then it holds also for k =r + 1. Suppose that in G there is an
r-cycle C containing the vertices z, ¥. If 8(C) is & non-empty set, then, according
to Lemma 1 we shall obtain by a A-extension of the cycle C through any its
vertex an (r + 1)-cycle containing the vertices . ¥. Let S(C) =0 and w be
any vertex of the set P(0) v @(0). Since r > 2, we have in C' a vertex (denote
it by v,) for which x # vr = y. According to Lemma 2 we get by a y-extension
of the cycle C through the vertex w with a replacement of the vertex vr an
(r + 1)-cycle C* containing the vertices ¥, y. Hence if the theorem holds for
% =r, it holds also for k =r+1<=2n+ 1 Thus the theorem holds for
& = 3, hence it also holds for all ke {3,4, ..., 2n 4- 1},

The following corollary is a direct consequence of Theorem 2:

Corollary 2. Each o(2n + :-.Sﬁﬁw with any natural © contains a Hamillonian
cycle.

Lemma 3. Let r,n,$ be natural numbers, where 2 < s<<r < 2n and let
V1, Ve, ..--> Vs D€ mutually different vertices of a o(2n + 1)-graph G. If there
is in G a r-cycle containing all vertices of the set V = {01, V2, - s} then for
cach k =r + 1, r+2,...,2n 4 1, there is in G also a k-cycle containing all
vertices from V.

Proof. Let there be in graph G a p-cycle Co containing all vertices of the
set V. The cycle Co may be successively extended by 2-extensions and y-exten-
sions through suitably chosen vertices into the cycles 01, Cs, ..., Canui-p>
where C; is the (p + 9)-cycle containing all vertices from V. This can be done
so that in case of S(Ci) =0 at the v-extension of eycle C; into cycle Cin
through a certain vertex with the replacement of the vertex v, from Ci,
we must chose for v, where (r =p + 1) always such a vertex from C; that
does not belong to V. Since such a cycle always exists with r 4 ¢ > s, the
lemma evidently bolds.

Remark 4. In Fig. 4 we have a 0(9)-graph with the following property:
In the graph there does not exist a 4-cycle containing the vertices u, v, w though
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there is in the same graph a 3-cycle with such vertices. Whence it follows that
the condition s < r must not be omitted from Lemma 3.

Fig. 4.

Lemma 4. Let n, p be natwral numbers and let C be the 2p-cycle of the o(2n + 1)-
graph C containing all vertices of a set V, then for any kb =2p + 1, 2p 4+ 2, ...y
9n -+ 1 there is i G a k-cycle containing all vertices of the set V.

Proof. The cycle C contains according to the assumption an even number
of vertices, therefore necessarily S(C) # 0 (in the reverse case we would have
1P(C) =1QO) =}2n + 1 —2p), which is impossible as |P(C)| must be
an integer). But then it is possible to extend the cycle C' by a A-extension
through a vertex from S(C)into a (2p + 1)-cycle containing all vertices from V.
If we put r =2p 4+1, s =1|V|, then s < r and the validity of Lemma 5
follows from Lemma. 3.

Remark 5. The difference between Lemma 3 and Lemma 4 is that in the
case of an even § we may have r = s, hence in the case of an even | V|, V may
be the set of all vertices of the cycle C.

Lemma 5. Let C be any (2p 4+ 1)-cycle of a e(2n + 1)-graph G (p < n) and
let V be the set of all vertices of the cycle C. Let k be any number from the set
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(2p +3,2p+ 4, ..... 20 4+ 1}, then there exists in graph G such a k-cycle
that contains all vertices from V.

Proof. If 8(C) is a non-empty set, then the cycle C may be extended by
a J-extension through a vertex of S8(C) into a (2p + 2)-cycle ¢’ which, apart
from all vertices of the set V contains only one other vertex from S(C). ¥From
the existence of the cycle C” there follows according to Lemma 3 the existence
of a k-cycle containing all vertices of the set V also for all ke {2p + 3,
2p 4 4,....,2n + 1}.

If S(C) = (; then there is in G at least one vertex w belonging to P(C) 0 Q(C)
and we get by a u-extension of the cycle C through the vertex w according
to Lemma 2 a (2p + 3)-cycle (" containing all vertices from V. ,

The validity of Lemma 5 then is evident from Lemma 3.

Lemma 6. Let G be a o(2n + 1)-graph and let V be the set of certain of its
r vertices, where 2 < r < 2n + 1. Let p be any natural number for which we
have 1 < p < r. If there is in G such a cycle C that contains apart from certain
p vertices from V at least one vertex not belonging to V, then there is in G also
a cycle C containing at least p + 1 vertices from V and besides at least one vertex
not belonging to V.

Proof. Let C be a cycle containing p vertices from V and at most one
vertex not belonging to V. We shall consider the following three possible
cases:

1. VnSIC) #¢0.

9. VN S(C) =, C containing only vertices from V.

3. VN 8(C) =0, C containing one vertex — denote it by vy — not
belonging to V.

In the first case we get a A-extension of the cycle C through any vertex
from V N S(C) a cycle with the required properties; in the second case we
get such a cycle by a p-extension of the cycle C through any vertex from the
st M =V (P(C) nQ(C)) and in the third case by a v-extension of the
cycle C through a vertex from M with the replacement of the vertex vp+1.
This proves the lemma.

Theorem 4. Let G be any o(2n + 1)-graph and let V be the set of certain r ver-
ticesof G (2 <7 < 2n + 1). If there is not in G an r-cycle containing all vertices
from V, then there exists in G an (r + 1)-cycle containing all vertices from V.

Proof. Let there not be in & an r-cycle containing all vertices from V and
let 2 # y be any vertices from V. According to Theorem 1 there isin G a 3-cycle
C containing the vertices z,¥. Hence there is in G a cycle ¢ which, with the
exception of certain p vertices from V(p € {2, 3}) contains at most one vertex
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not belonging to V. But then, according to Lemma 6, in case when p <,
there is in G a cycle ' containing at least p + 1 vertices from ¥ and at most
one vertex not belonging to V. According to Lemma 6 the cycle C can be
successively extended through the vertices from V so that the number of
vertices of the cycle not belonging to ¥V never exceeds one. After a finite
number of steps we shall find such a cycle that contains all vertices from V
and besides at most one vertex not belonging to V. Such cycle according
to the assumption must be an (r 4 1)-cycle. The Lemma follows.
The following corollary is a direct consequence of Lemma 4.

Corollary 3. Let G be any o(2n + 1)-graph and let V be the set of certain r ver-
tices from G where 2 <71 < on. If there is not in G an (r + 1)-cycle containing
all vertices from V then there is in G an r-cycle containing all vertices from V.

Theorem 5. Let n,r be natural numbers 2 < r< 2n, n>1 and let G be
any o(2n + 1)-graph. Let R={r,r+1,....,2n+ 1} and let V be any sel
of r vertices from G. In G there is a cycle containing all vertices from V either
for all ke R, oll for all k€ R with the exception of k =1, or for ke R with the
exception of k =7 + L.

Proof. If in @ there are both an r-cycle and an (r + 1)-cycle containing
all vertices from V, then there is, according to Lemma 3 in G a k-cycle con-
taining all vertices from V for every ke R.

If there is in G no (r + 1)-cycle containing all vertices from V then (see
Corollary 3) there is in G an r-cycle containing all vertices from V and according
to Lemmas 4 and 5 there exists such a k-cycle also for every k >r + 1,
kF<2n+ L

Finally: If there is not in @ an r-cycle containing all vertices from V, then,
according to the theorem, there is in G an (r 4 1)-cycle containing all vertices
from V. According to Lemma 3 such a cycle exists for all k€ R with one
exception only: k # 7. This proves the theorem.

REFERENCES

(1] Kotzig A., O rovnovdZne orientovangch koneényech grafoch, Casop. péstov. mat. 84
(1959), 31—45.
[2] Berge C., The theory of graphs and its applications, London — New York 1962.

Received March 6, 1965.
Katedra numerickej matematiky a matematickej Statistiky
Prirodovedeckej fakulty
Univerzity Komenského, Bratislava

182




