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THE REPRESENTATION OF INERTIAL PARTICLES IN THE
LIE ALGEBRA OF THE LORENTZ GROUP

JURAJ VIRSIK, Bratislava

mo.Bm .bwm properties of the general Lorentz group are investigated and an
application of them to the space-time structure of the special relativity theory
is given. .

All the Em&.iomm dealt with are supposed to be real. The Lie group of regular
(n X SYH.smeEoom X = [«t*] is denoted by GL(n, R). Let G = [gab] be a fixed
regular diagonal (n X n)-matrix. The matrices X with elements zi satisfying

n(n + 1) )

the |s|w|\ equations

(1) Fr = ggpaokadl — git = 0; k <1 (1)

form a wﬂ.%mnoww G(G) of GL (n, R). This can be easily established observing
that (1) is equivalent to X*GX == @, where X* denotes the transpose of X.
.Hz other words, ®(G) is the general Lorentz group of matrices X which leave
invariant the quadratic form

(2) & — E*GE

on R, Zoam.nrma G(E) (E the unity matrix) is the orthogonal group O(n}
and G(L), with L, the diagonal matrix of the form

(3) B4 68+8-7E (c>0),

is the usual full Lorentz group.
ZS@. we shall explicitly show that G(G) is a Lie subgroup of GL (n, R}
and point out a concrete local chart of (@) containing the unity element £.

Lemma. The Jacobian of (1), ¢. e.

L . Ll ; .
(*) Summation over repeated indices. No ,,geometrical”® difference is made betwcen
upper and lower indices.
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aFkl
oxl

withl <1,i1 =]

(4) det

taken ot the point E, is non-zero.
Proof. Direct differentiation of (1) gives

oFx

(5 — (E) = gudm -+ grids
ox¥
. n(n + 1)
(6 is the usual Kronecker symbol). This is a matrix of order i\wl\l for
i <4, b =1 Let us suppose there exists a non-trivial system of numbers
ey n(n 4 1) .

gk (k < 1) satisfying the 5 linear equations
(6) S (gudp + giidn) gt = 0; =]

=

1f we define ¥ = 0 for k> 1 and denote Y = [y#] then (6) asserts that the

matrix G(Y* + Y) has zero elements on its principal diagonal and above it.

Furthermore it is also symmetric and hence G(Y* 4+ Y)=01i. e. Y =0

Thus the determinant (4) is necessarily non-zero. ;
Applying the implicit function theorem one can find a neighbourhood %o

n(n — 1)

of the origin 0 in R¥ {N = 5

in G(6) (B(G) provided with the topology induced by the natural topology

in R¥) and a homeomorphism go: %(E) — @,. This ¢o has the properties:

,aneighbourhood % (E) of the matrix E

. S — 17,4 il.&.imom.NnVN
(7a) >3 = _l.eo ?S T R at) for k <1

where ki (k < 1) are the (analytic) mﬁboﬁ.obm obtained by ,solving the equa-
tions (1) with respect to 2k (B < 1), and

(7b) polE) = O

Thus the pair (% (E), ¥o) defines a local chart on ®(G). Tt can be easily shown
that the family of charts (4 . AU(E), qa) for all 4 € ®(G), where @a(X)=
= qo(471X), provides ®(G) with the structure of an analytic submanifold of
GL(n, R). Moreover B(F) is a topological group with the topology induced
by the topology in GL(n, R). Hence it is an N-dimensional Lie subgroup of
GL(n, R).

Lemma. The functions in (7a) satisfy the equations
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ohab

oxti

(O) = — gufia

i & - 1
fora£b,i>), with §ap = 0 for a #0b, aa =— fora=1,2,
Jaa
Proof. Differentiation of (1) provides

aF NE& ohat
B+ © =0, k<l i>j

oxt azh m&ne m&:

i. e. using (5)
Ohab

(8) gidse + gridin + 2, (Gardsr + Grader) (0) =

ash ot
Note here that gudy = 0 for all k <1, i > j. Given a fixed pair (t>5
is + 1) ’

equations possessing aunique solution (cf. the lemma

(8) is a system of

2
above). Hence it suffices to show
(9) > (gudurgivdia + Jradorginfia) = GitSik -
ash

This, however, is evident: The first summand in the bracket is zero for each
k <! and a < b. The second one is non-zero only if I =14, k= with both
a =1, b = k and its value is gi;. The same, of course, is true about the right
hand side. Thus the lemma is proved.

The Lie algebra gL(n, R) of GL(n, R) consists of all the (n X n)-matrices
and the product is given by (4, B) > AB — BA (multiplication of matrices):
Each 4 € gL(n, R) can be written in the vector form

4= M Oxkl ().

Let g(G') be the Lie algebra of &(G). It is a subalgebra of gL(n, R) and the
homeomorphism go defines a canonical basis

(10) Uy= . wgz (B), i>j
N:

where U;; are the vectors in m@«v associated with the coordinates given by the
mapping @, 1. €.

m
vuim — 0 0y s

oxil

for each function f differentiable in a neighbourhood of E in GL(n, R).
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Applying (7a) and the preceding lemma one finds

0 0 Ohkl
U FNE) =~ (B) -+ hLlE

m&& k<l @ui& @.‘N&.

_ (@ 5 0 —_—
Py Jm?? P (HE), >3

Comparison with (10) gives

ul} = o} for k> 1,
uly = —gafi for k < 1.
The elements 7' = [t¥7] € g(G) can be expressed in the form

gm0k fork >1
Kkl — T, KL
AMHV ¢ SM.‘% i P M Q:Q&n%& for b < l
i>]

Note that the last expression is zero if &£ = L.

Proposition. The mairixz T € gL (n, R) is an element of the Lie algebra g{G)
if and only if

(12) T* 4 GTG = 0.

Proof. Let 7' € g(G). Then the (e, b) — element of the matrix on the left
hand side of (12) is

(13) 10 4 guitiiGpy = 0% + Gaat®Gon- ()
If b > a this is equal to

Joa — Qaa@gg_a%enwg =
If b < a, (13) gives
— Qaamg%aw 4 Qaa%.aewg = 0.
The case ¢ = b is evident.

Conversely let 2 satisfy (13). A similar consideration yields (11) q. e. d.
Each element 7' of the Lie algebra gL{n, R) generates a one-parameter
q :
subgroup I'r = {I'7(0)}yc g of GL{n, R) with m.lowﬁgv =T,i.e.I'p(0)=e™
0=0
Particularly 7' € g(&) induces ¢’ e B(@) for all § € R. The basis Uy(i > ))

n{n — 1)
of g(@) generates %

one-parameter subgroups [y = ?q © Vi

(?) No summation applied in the rest of the proof.



The exponential mapping exp: 0(@) - ®(@) given by exp T = I'p(1l) = €T
provides a homeomomorphism of a neighbourhood of the origin in g(G) onto
a neighbourhood of E in B(G) (cf. [1]).

For the sake of simplicity and physical interpretation we shall restrict our
following considerations to the case G — L . G+ will denote the proper Lorentz
group,i. e. the component in ®(L) containing E. It consists of space and time
orientation preserving Lorentz transformations. The matrices Iy;(6) can be
given now an explicit form. We have I;(0) = ¢"*® or, after having solved
the corresponding differential equations,

cos sinf 0 O
() = —sin N GOmN m w . or
0 o 0 1
coshffc 0 O csinhbfe
O B S
ijc.sinhffc 0 O cosh Ofc

respectively, with similar expresions for I31(6), I's2(0), or for I'se(0), I'ss(9)
respectively. Hence the one-parameter group i (4> i > j) represents all
the space rotations in the (i, j)-coordinate plane while I'y; (j = 1, 2, 3) cor-
respond to parallel frames moving along the j-th axis. (%)

The subgroup of G+ consisting of matrices of the type

P; 0
]

where P is a (3 X 3)-orthogonal matrix with det Ps > 0, is denoted by D.
It is clearly a Lie subgroup of &+ its Lie algebra being the vector subspace
of g(I) generated by the vectors Usy, Usr, Uss. The vectors Usi, Uss, Uss
generate a vector subspace m <= g(L) so that gq(L) =1 @ m. Clearly
is a subalgebra of g(L) but this is not true about m. Nevertheless there is
a (local) homeomorphism of a neighbourhood of the origin in m onto a neigh-
bourhood of the unity class in the space %+/O of right cosets O.X. This
homeomorphism is a restriction of the mapping

(14) mexp:m—> GO,

where 7 is the projection in $+/O and G+/O is provided with the induced
coset topology (cf. [1] Ch. IL Lemma 4.1).

(®) ,,Parallel” means here always including orientation.
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Our next task is to show that in this special case the mapping (14) is a homeo-
morphism on the whole of m onto ®+/O. We shall first prove that (14) is
2 one-to-one mapping of m onto G+/O.

One can give a physical interpretation to the space ®+/O. The matrices of
G+ represent inertial observers of the special relativity theory, one observer
being pointed out as corresponding to the unity matrix E. We shall call him
the original observer. Each coset of ®*/O represents a class of observers
moving with a common 3-velocity vector but their frames (of orthogonal space
coordinates) arbitrarily turned. Thus a coset of ®+O can be characterized by
inertial observers without frames: we shall identify them with inertial mate-
rial particles and call them simply particles. A right coset of G+O will be
called an IP-coset.

An inertial particle can be equipped with a canonical frame — a frame with
its axes parallel to those of the original observer. This canonical frame of the
particle defines a Lorentz matrix of special kind. Let us call it an IP-matrix.
From the intuitive point of view it is quite natural that the correspondence
between ITP-cosets and IP-matrices is a one-to-one. Nevertheless we shall give
a mathematically strict proof of this statement (cf. the proposition bellow).

1t is known that each X € ®+ can be written as X = P .8, where P & \9)
and S is an TP-matrix. Moreover each IP-matrix ( E) has the form (cf [2])

q—1
By + - Ws —gqv*

72

—qfc® v q

1

Ra— -3

sﬁmnreﬂ<em+em+ewAs q = ~||-M 5 Ws = [vwy],
C

where v, v2, v3 are the components of the velocity vector v of the particle
with respect to the coordinate system of the original observer.

Proposition. Each IP-coset contains one and only one IP-matriz.

Proof. As stated above, each coset of ®+/O contains an TP-matrix. Suppose
a coset contains two IP-matrices, i. e. Sy = PS; for some IP-matrices St,
Ss; P € D. Then direct calculation gives

qg—1 .
() e A R T e —av)
—qfc? q
q—1
Py + PsW3 — qPav*
= GN
—qfcv q

and comparing the lower rows of PS; and of Sz one gets Sy = S2.
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Hence there is a one-to-one correspondence between the points of the open
ball v% + v% + 3 < ¢ and the IP-cosets. (15) gives an explicit expression of
this correspondence: If X = [z¥] € ®+, the triple (v1, vz, v3) corresponding to
the class of X is given by

c2x47

16 = — .
(16) . vy prry

Now one can find the explicit form of the mapping (14) simply by computing
the elements of the fourth row of the matrix exp 7', 7' e m. For this purpose
let T = t1U41 + tUs2 + tsU 3. The matrix

exp T0 = I'r(6) (0 € R)
is the solution of the system of differential equations

Q. "
—I'p(6) = I'p(6). T
o T(6) (0)

with I'z(0) = E. Denoting I'r(0) = [yu(0)] and ¢ = ﬁ\mﬁf t5 4 t; one gets

7% g
yar(l) = lm sinhect; k<4, t#£0
¢

y314(1) = cosh ¢ ;
or, with respect to (16) and €% = E,

SN f
(1) v = ; ghci ort# 0

vp =0 fort = 0.
This formulae can be inverted in a unique way

Ve
(18) e = — P arccosh ¢ forv# 0

ty =0 forv =0
Thus the mapping (14) is a one-to-one. It is also a homeomorphism as one

can easily see from (17) and (18) realizing that the topology in G*/O is such
that = is continuous and open. We may sum this up in the
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3HIBAETCA, YTO OTOOpaKeHuWe 7.eXp (cM. (14)) sBaserca romeoMopduamom (8 ueaom)
OIIpeseNIeHHOr0 JIMHEHHOT0 TOTIPOCTPAHCTRA Tt B g{L) Ha DPOCTPAHCTBO IPABEIX CMEMHBIX
xaccoB G+/O. Tar KAk Dpy ONPefleleHHEX YCAOBMAX BOBMOMKHO COMOCTABUTE HKaKAOMY
anementy us /O ,,uHepHHATLHYIO gacTaiy’’, aTOT rOMeoMOPdH3M MOPOHIAeT IPeCTaB-
JeHMe MHEPMUATBHHX vacthn B m C a(L). Jlaerca ¢usuyeckas MHTepmpeTanus (aHami-
TuuecKoro) BerTopHOro noiid Ha O, CBA3AHIOrO ¢ BEKTOPOM H3 Ti.

Wapo MI., Asmocosnadenue Yy UCKPOSHL CUEUMUUKOS, Mat.-fyz. Sasop. 16 (1966},
91—96. {CroBanK.; pes. AHCIL.)

Ilpexsaputensuoe coobuienue. TlpwBefes IPUHIUN W OMICAHUE YCTAHOBKH M cayqaik
TPEXKPATHOTO M YETHPEXKPATHOr0 aBTOCOBHAIEHMUA UCKPOBHIX CUETYHKOB ¢ HEOMHOPORHBIM
nosneM. Paspemaomee BpeMA MEHAGTCA C HapaMeTpaMi yeraHoBKH OT 107% 5 1o 1078 s,

Theorem. The mapping 7 .exp is a homeomorphism of the linear subspace
m = q(L) onto the space ®+O of IP-cosets. This homeomorphism is given by
(17) resp. (18) and maps 1P-cosets corresponding to particles moving along the
I-th axis onto vectors in m colinear with Us,. Moreover it represents the fa-
mily of particles moving in a given direction as a subspace of colinear vectors in m.

Note that in our considerations the inertial particle is completely characteriz-
ed by its 3-velocity vector and no attention is payed to its position say in the
zero moment of the original observer. So we can always suppose the particle
passing the origin of the original observer (and also of the others) at this
moment. .

Up to this time we have used the one-to-one correspondence between particles
and IP-cosets provided all the measurings have been made with respect to
the original observer. If p denotes the particle in view and & (p, ) the cor-
responding coset of &+/D then h(p, E) is given by the triple (v:, vz, v3) des-
cribing the 3-velocity vector components of the particle from the point of
view of the original observer. Calculating the velocity vector with respect
to another observer, say given by the matrix Xo € G+, one obtains in general
an other triple (v;, v, vs) defining an another IP-coset. In order to get expli-
citly this new triple it suffices to calculate the lower row in the matrix YX;
where Y is an arbitrary matrix of the IP-coset given by the triple (v1, v2, v3).
Formally it can be shown that the homeomorphism (14) defines a unique
analytic structure on $+/O with the property that &+ is a Lie transformation
group of +/O (cf. [1] Th. 4.2).

We may connect with each particle p and each observer given by Xo € U}
an I1P-coset k(p, Xo) defined by

k(p, Xo) = h(p, E) . X5

In accordance with the considerations above the triple (v1, v2, v3) correspond-
ing to the TP-coset h(p, Xo) is nothing else but the 3-velocity components of
the particle with respect to the observer represented by the matrix Xo.

On the other hand the linear subspace m = g(L) may be considered as a li-
near space of right invariant vector fields on G+. Hence there is a canonical
one-to-one correspondence 7' — Xo(T) between the vectors of m and the
vectors of a linear subspace m(X,) of the tangent space to G+ at Xo. Let:
log: +O —m denote the inverse of the homeomorphism (14). Given a fixed
particle p one can define a continuous vector field on G+ by

Xo - Fo(X,) = (Xo log) h(p, Xo).

It is not difficult to see that this is even an analytic vector field on G*.
The field Xo — F,(Xo) is uniquely defined by F (&) = log k(p, £) and for
a fixed X, € B+ the correspondence p — F,(Xo) is a one-to-one. The physical
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meaning of this field can be found in the following: Given F(X,) one calculates
its components ¢ with respect to the basis Xo (Uax) (k= 1, 2, 3), uses (17)
and gets the components of the 3-velocity of the particle measured by the
observer connected with the matrix Xo. In particular F(Xo) == 0 means that
the particle p is in rest with respect to Xo.
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