INTRODUCING AN ORJENTATION INTO A GIVEN
NON-DIRECTED GRAPH

BOHDAN ZELINKA, Liberec

In [2] A. Kotzig publishes the following problem (Problem 24, p. 162):

Let G be a non-directed graph without loops and mudtiple edges, with the set V
of vertices. Characterize those subsets X (respeciively Y) of V which arise from
an orientation of G as the set of those vertices at which there is no incoming (res-
pectively outgoing) edge.

This problem is being solved in this paper (we consider only finite graphs}.

We shall assume that the graph @ is connected. If it is not, we may consider
each component separately. By a tree we understand any connected graph
without circuits, therefore also the graph consisting of a unique isolated
vertex. The symbol I u, where u is a vertex of the graph G will signify the set
of vertices of the graph & which are joined by an edge with the vertex u.
If M <=V, then ’'M = (J T'u.

ueM
Theorem 1. Let G be a non-directed graph without loops and multiple edges,

its vertex set be V. The system H(Q) (resp. N (G)) of those subsets X (resp. ¥)
of the set V which arise from an orientation of G as the set of those vertices ot
which there is no incoming (resp. outgoing) edge is equal to the system of all
internally stable (see [1]) subsets of the set V in the case where (I is not a tree
and is equal to the system of all non-empty wnternally stable subsets of the set V
in the case where G is a lrec.

Before proving this theorem, we shall state some lemmas.

Lemma 1. There is always 4 (G) = A4 (G).

Proof. Let M € .#(@) and let the graph @ be directed so that the set M
is the set of exactly all vertices at which there is no incoming edge. Now if
we shall reverse the orientation of all edges of the graph G, the set M is evident-
ly the set of exactly all vertices at which there is no outgoing edge. So M €
€ N(G). Analogously we can prove that M e 4(@) implies M e.#(G).

Lemma 2. If G is a tree, then at an arbitrary ortentation of G there exists

at least one vertex of the graph G at which there is no incoming edge of G, so () ¢
¢ A (G).
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Proof. Each edge of the graph ¢ comes exactly into one vertex. Therefore
the number of the vertices at which there is at least one incoming edge cannot
exceed the number of edges of the graph. As the number of edges of a tree
is less than the number of its vertices, there must exist at least one vertex
in G at which there is no incoming edge of G.

Lemma 3. If G is a tree,uw an arbitrary vertex of it, then G can be directed so
that u is the unique vertex in G at which there is no incoming edge.

This assertion is well-known and intuitive, so we shall not give the proof.
Let us note only that the graph @ thus directed is properly an ,,arborescen-
ce’’ (see [1]) with the root u.

Lemma 4. If G is not a tree, then it can be directed so that at each vertex of G
there 1s at least one incoming edge of G, therefore § € M (G).

Proof. Let K be an arbitrary skeleton of the graph G. Choose a vertex u
of the graph G which is incident at least with one edge not belonging to K.
Such a vertex exists, because G is not a tree. Direct the graph K so that «
is the unique vertex in K at which there is no incoming edge of K (see Lemma 3).
Now choose an edge % incident with « which does not belong to K and direct
it so that it might come into u. The remaining edges of the graph G may be
directed arbitrarily. In the case of such an orientation there is evidently at
cach vertex of the graph G some incoming edge of G-

Proof of the Theorem 1. If M e .#(G), then M must be internally
stable. If M contained two vertices z, y joined to one another by the edge 4,
then at every orientation the edge £ would have to come either into z or into
¥, and therefore either z or ¥ would not belong to M, which is a contradiction.
Now let M be an internally stable subset of the set V. The case M = () has
been investigated in the Lemmas 2 and 4, so assume M # ) and do not di-
stinguish whether ¢ is a tree or not. All edges incident with any vertex of M
will be directed so that they might go out of that vertex. Edges joining two
vertices of I'M may be directed arbitrarily. Now denote by @' the graph which
arises from G by removing the vertex set M U I'M and all edges incident, with
any vertex of that set. If ¢ is an empty graph, the proof is finished. If G’
is non-empty, let ¢ be a component of it. If C is not a tree, direct it so that
at each vertex of O there is at least one incoming edge of €' (see Lemma 4).
Edges joining vertices of C' with vertices of I'M may be directed arbitrarily.
If Cisatree, let u be a vertex of the graph € which is joined by an edge & with
some vertex of I'M. Such a vertex must exist, because ¢ is connected. Direct
the graph C so that w might be a unique vertex in C at which there is no
incoming edge of ' (see Lemma 3). Direct the edge k so that it might come
into u. Other edges joining vertices of ¢ with vertices of I'M may be directed
arbitrarily. The graph G' which is thus directed has evidently the following
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property: The set M is the set of exactly all vertices of @ at which there is no
mcoming edge of G. So M € .#(G). This was the proof of the assertion for
#(G) and according to Lemma 1 the same must hold also for .47(@)

I1.

In this paragraph we shall investigate simultaneously the sets X and ¥
and consider relations between them.

Lemma 5. Let G be a tree. Given an arbitrary decomposition of the set of its
end vertices into two non-empty disjoint sets Xo, Yo, the graph G can be directed
sothat X = Xo, Y = Yo might hold.

Proof. If G consists of only one isolated vertex, the above mentioned
decomposition does not exist. So we shall investigate only graphs which contain
at least one edge and use the mathematical induction with respect to the
number of edges.

Let G contain a unique edge % and its end vertices %, v. Both these vertices
are the end vertices of the graph @. There exist exactly two decompositions
which fulfill the condition of the lemma, they are X = {u}, Yo = {»} and
Xo = {v}, ¥ 9= {u}. The orientation of the edge k from u into v corresponds
to the first decomposition, the orientation of the edge k from v into « corces-
ponds to the second one.

Now assume that the lemma holds for all trees containing n — 1 edges,
where 2 =2 is a positive integer. Let G be a tree with n edges and let the sets
Xo, Yo fulfilling the condition of the lemma, be given. Assume that Xo has
the cardinality greater or equal to the cardinality of ¥,. Choose a vertex
# & Xo. Let the edge incident with « be denoted by &, let the vertex incident
with % different from » be denoted by v. Let G’ be the graph which arises
from the graph ¢ by removing the vertex % and the edge k. The graph G’
is evidently again a tree. Now two cases can oceur either » is an end vertex
of &, or not. If v is an end vertex of &', take the decomposition of the set of
the set of the end vertices of the graph G’ into the sets X, ¥ o> Where Xy =
=(Xo = {u}) U o}, Yo = 7,.

The sets X,, ¥, are evidently non-empty and disjoint and form a decompo-
sition of the set of end vertices of the graph G, the graph @' contains n — 1
edges, and so G can be directed so that X (resp. Yg) might be the set of all
vertices, at which there is no incoming (resp. outgoing) edge. Now if the graph
@ is directed so that the edge & is directed from % into v and other edges are
directed in the same way as in G”, an orientation of the graph @ fulfilling the
assertion of the lemma is obtained. If v is not an end vertex of the graph @,
the graph G is not a path and therefore contains at least three end vertices.
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Decompose the set of end vertices of the graph & into the sets X;, ¥ o» Where
Xg= Xy~ {u}, Yo=Y,. The sets X, Y, are again non-empty, disjoint
and form a decomposition of the set of end vertices of the graph G’. We proceed
in further quite the same way as in the preceding case. In the case where the
cardinality of the set X is less than the cardinality of the set Y, we choose

u € Yy and proceed analogously.

Lemma 6. Let G be a connected graph which is not a tree. Given an arbitrary
decomposition of the sel of its end vertices into two disjoint subsets Xo, Yo, the
graph G can be directed so that X — Xo, ¥ = ¥,.

Here the case where one of the sets Xo, Yo or even both are empty is not
excluded.

Proof. Denote by F the set of end vertices of the g.aph @. First consider
the case when both the sets X, ¥ are non-empty. Choose an arbitrary skele-:
ton K of the graph G. The set of end vertices of the skeleton K will be denoted
F', evidently F C F'. Now the decomposition of the set F' into two disjoint
non-empty subsets X,. ¥, will be described. All vertices of the set X, will
belong to X, all vertices of the set Yo will belong to Y,. A vertex of ' = F
which is joined in G with some vertex not belonging to F by an edge not
belonging to K can be put into an arbitrary set of X;, ¥; .Now take the sub-
graph H of the graph ' generated by the sets of those vertices of F' — F
which are mnot joined with any vertex not belonging to F' by an
edge not belonging to K. If some component of the graph H is a tree,
choose one vertex in it and put it into Y,, all other vertices of that
component will be put into X,. All vertices of the component of the
graph H which is not a tree will be put into X,. Now direct the skeleton K
so that X (resp. Y,) might be the set of all vertices at which there is no in-
coming (resp. outgoing) edge of K (see Lemma 5). If the vertex u e ' — F
is joined with a vertex v ¢ F' by an edge k not belonging to X and if « e X,
(resp. u € Y,), direct the edge & from v into « (resp. from w» into v). Now let
Hy be a component of the graph H. If H, is a tree and w is a vertex of H,
belonging to. Mﬂ.: direct He so that w might be the unique vertex in Hy, at
which there is no incoming edge of Hy (see Lemma 3). If Hy is not a tree,
direct it so that at every vertex of Hy there might be at least one incoming
edge of Hy (see Lemma, 4). Other edges of the graph ( can be directed arbitrari-
ly. Evidently an orientation fulfilling the assertion of the lemma is obtained.

Now let Xo = 0, Yo # 0. Choose again a skeleton X of the graph G. If there
exist end vertices of the skeleton X which are not end vertices of the graph @,
we proceed as in the preceeding case and take X, 7 () which can evidently
be chosen in such a way (the component of Hy cannot be an isolated vertex,
because such a vertex would be an end vertex of the graph, which would be
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a contradiction with the assumption that all vertices of the graph H belon
to K — F). If all end vertices of the skeleton K are end vertices of the mnm%m
‘G, choose a vertex u which is incident with an edge % of the graph @ which
does not belong to K. Direct the skeleton A as an ,,arborescence* with the
root u (see Lemma 3). Further direct the edge & so that it might come into %
;E.Hm remaining edges may be directed arbitrarily. Evidently the Qom?&.
orientation is obtained. .

.Hz the case Xo # }, Yy = ) we proceed analogously.

If Xo = Yo = 0, proceed again as in the first case, but X, #0, ¥, # g
must hold. This can be obtained. (The set F' contains at least esﬁ vertices.)
If the graph H is non-empty and contains a component which is not g anom
Q.S assertion is evident. If H contains only components which are not ﬁ,oom,
m:,moﬁ one of them according to Lemma 4. Choose an edge k in it and E@om
its beginning vertex into ¥ o, others into X, o- If H is empty, then every vertex
of F' is joined with a vertex not belonging to F’ by an edge not belonging to
K and can be put into an arbitrary edge of the sets X5, ¥y. As F' contains
at least two vertices, the assertion holds also here.

Now we can express a theorem.

Theorem 2. Let there be given a connected graph @ containing at least two
vertices and given two subsets X , Y of its vertea set. The graph G can be directed
s0 QS;. X (resp. Y) might be the set of all vertices of the graph G, at which there
8 mo wncoming (resp. outgoing) edge, if and only if the Jollowing conditions are
Sulfilled:

(1) X and Y are internally stable.

(2) XnY=0a.

3) Bvery end vertex of the graph G belongs either to X, or to Y.

(4) If H, is a component of the graph H arisen from the greph G by removing the
ithe set X U Y and of Hy is a tree, then Ho contains a vertex jotned in G with
a vertex of X and a vertex v joined in G with a vertex of Y. .

Proof. Necessity of the condition (1) is implied by Theorem 1. The inter-
section X N ¥ at an orientation of the graph G fulfilling the assertion of the
theorem would be the set of vertices, at which there are neither incoming, nor
outgoing edges, i. e. the set of isolated vertices. As @ is connected and contains

at least two vertices, this set is empty. Therefore the condition (2) is necessary.
Hr.o necessity of the condition (3) is also evident. An end vertex of the Mnmmr
G is incident only with one edge and this edge cannot be at the same time
an incoming edge and an outgoin g one. Assume that there exists a component
Hy of the graph H which is a tree and no one of whose vertices is joined with
2 vertex of X. So if the vertex w of H, is incident with an edge % not belong-
ing to Hy, the edge % joins the vertex with a vertex v € ¥ and therefore the
edge k at the orientation fulfilling the condition of the theorem must be direct-
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ed from « into ». Therefore at no vertex of Hy there is an incoming edge not
belonging to Hy. But according to Lemma 2 at every orientation there must
exist a vertex in Ho at which there is no incoming edge of Hy. Therefore H,
contains a vertex w at which there is no incoming edge of ¢ and so w € X,
which is a contradiction with the assumption that w belongs to H. In a case
where a vertex of Hy is joined with a vertex of Y, the proof is analogous.
Thus also the conditon (4) is necessary.

Now let the conditions (1), (2), (3), (4) be fulfilled. All edge~ incident with
any vertex of X' (resp. of Y) will be directed so that they might go out from
(resp. come into) that vertex. Now let I, be a component of the graph H.
All end vertices of the graph H; are joined either with some vertex of X,
or with some vertex of Y. If an end vertex of the graph H; were joined neither
with a vertex of X, nor with a vertex of ¥, it would be an end vertex also in
the graph ¢ and would have to belong, according to the condition (3), to X
or to Y, which would be a contradiction. Decompose the set of end vertices
of the graph H, into two disjoint subsets X, Yy so that end vertices of the
graph Hy which are joined with vertices of X (resp. of ¥) and are not joined
with vertices of ¥ (resp. of X) might belong to Xg (resp. to Yy), and vertices
of the graph H; which are joined at the same time with vertices of X and of ¥
may belong to one arbitrary set of Xy, ¥,. If possible, we do it so that X,
and Yo might be non-empty. If it is not possible, it signifies that either no
end vertex of H; is joined with a vertex of X, or no end vertex of H; is joined
with a vertex of Y. If Hy is not a tree, some of the sets Xo, ¥ may be empty.
If Hy is a tree and no end vertex of H; is joined with a vertex of X (resp. of Y),
according to the condition (4) some internal vertex ug of H; must be joined
with a vertex of X (resp. of ¥), denote this case by («) (resp. by (8)).

If neither («), nor (8) occurs, direct the graph H, so thdt X, (resp. Yo)
might be the set of vertices at which there is no incoming (resp. outgoing)
edge of H;. In the case («) direct the graph H; as an ,,arborescence” with the
root ug. In the case () proceed analogously as in the case («). Do this with
each component of the graph H. The orientation obtained so fulfills evidently
the assertion of the theorem.
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