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L HZHWOUGQHHOZ

The formal languages here considered form a class %o which contains the
class of Chomsky’s context-free grammars. Language ALGOL 60 (if con-
sidered without the limitations given in the non-formal parts of [1]) belongs
to %o, too.

Recently the problem of semantics definition for languages from %, has
been rajsed (in connection with the unsatisfactory exactness of ALGOL 60
description). This problem was studied in Fabian’s paper [4]. He investigated
such semantics (a semantics is simply a transformation defined on the set of
all terminal texts derivable in a given language), that the semantics value
of a text ¢ derivable from a non-terminal symbol 4 is determined, roughly
speaking, by the way in which the text ¢ is derivative from the symbol A4
and showed, that for such definition of semantics the weak structural unambi-
guity (see Def. 7.1, [4]) of a given language is very important. (Also some
ambiguities of ALGOL 60 were a consequence of the fact that ALGOL 60
is not weakly structurally unambiguous.) But the concept of structural un-
ambiguity (see Def. 7.1, [4]) is more convenient for the study. It has been
proved (see[5]) that it is possible to transfer the investigation of weak struc-
tural unambiguity of a given language on the investigation of structural
unambiguity of another language. Hence it is sufficient to study the structural
anambiguity (s. u. ) of formal languages.

In this paper the influence of language reduction (a non-terminal symbol
is removed from the language by replacing, in all metatexts of the language
(2 metatext is simply such text by which a non-terminal symbol may be
replaced, this symbol with its metatexts) and the language extension (a part
of a metatext is replaced by new non-terminal symbol), on the structural
unambignity is studied. (The operations of reduction and extension have
been introduced in Culik’s paper [2].) It is proved that the extension and,
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under certain easily verified assumptions, even reduction have no influence
upon structural unambiguity.

The operation of extension has been used in the proof of structural un-
ambiguity of the language ALGOL MOD which is a slight modification of the
language ALGOL 60 (see [6]).

The present paper uses notations and definitions of [4]. The reader should
be familiar with section 1 to 7, [4].

2. REDUCTION OF LANGUAGES

A language % is said to be cyclic if there is a text ¢ such that & : ¢ —>t¢.
It has been proved (see [5]), that a language . is cyclic if and only if there is
an 4 € d¥ such that &: [4] - [4]. Moreover, (see [5]) the structurally un-
ambiguous language is not cyclic. Denote by %, the class of all non-cyclic
languages and by % the class of non-cyclic langnages such that d.% and
{; 4 €d?, a € LA} are finite sets.

2.1. Notations. If & is a language, g € g2, then by Seg (S.9) we
shall denote the set of all structures [, 7] (such that o« = [4]) of g in Z.
By 9u% (9.-%) we shall denote the set of all structural unambiguous (structural
ambiguous) grammatical elements of %.

2.2. Definition. A metasymbol 4 e d.Z is called simple if there is only one «
such that @ € 4. A metasymbol 4 is called reductible if 4 ¢ symb %A,
symb %4 #~ Aand 4 € symb U {¥B; Bed Z}.

Let 4 be a reductible metasymbol, « e ZA, « # A. Denote y the transfor-
mation defined on 6.7 in the following manner:

(1) If 4 is a simple metasymbol, then
(1a) yt = I1%, where £ is the decomposition defined on df such that, for each
vedE, & = [t]) (=a) if ti £ A (=A).
(2) If 4 is not a simple metasymbol, then
[2a] yt = {[IE; & is a decomposition defined on dt such that, for each i e dg,
either & = [ti) or & = o and #i — A}
Moreover, denote .#% the transformation defined as follows:
dZ — {4} if 4 is a simple metasymbol
d7% = e
N d.? otherwise,
and
U {pspe¥By ifB+4

2°B ~ A
LA — {a} if B=4ded%s.
The language %% will be called (4, a) — reduction of 2.
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2.3. Theorem. ILet 4 be g reductible metasymbol of a language & e %o
and let A 5+ « € LA. Then 2Ly €60 and if

(1) for each Beds s and ar, aye B the mequality o, + a2 tmplies

wo M pag = A,
then 2% is s. u. if and only if so is &P. 1f (1) does not hold then & is nots. u.

(In the case A is a simple metasymbol we received the language % from %
by omitting the metasymbol 4 from d.% and by replacing, in all metatexts
of Z, the symbol 4 with o. If 4 is not a simple metasymbol then the matter
Is a little more complicated. In that case we received the language £ from &
in such a way that each metatext B is replaced with new metatexts which are
received 2 new metatexts from every f where # is the number of a]] 4 in 8.
Moreover, « is omitting from the metatexts of the symbol 4 in 77 )

Proof. Denote briefly %, — Z%. In order to prove Z, is a language, it
suffices to show according to the definition of Zy and Def. 5.1, [4], that
[B]l ¢ ZoBif B € d%,. But it follows straightfocrward from the definition of %,
and from non-cyclicity of ..

Next, it is obvious that % [B] >tif Ly:[B] =t Hence,

(2) Z: [(B] >t if &, [Bl—>t¢
and % is the non-cyclic language, i. e. Lo €€y,

Now suppose that (1) does not hold. Then there are Bed¥?, o, ap ¢ B
such that o # ay and Yo N yag 75 A, Let ag € pay N yaz. Recalling the de-
finition of y we have & a1 = g, L ag - ag, and therefore, since a1 £ e,
[B, «] € 9. and the second assertion of Theorem is proved. In what follows.
we shall suppose that (1) holds.

In the following we shall say that a text ¢t does not contain the symhol 4
if 4 ¢symb {t}. We proceed to prove some auxiliary results.

(8) If g2 £ A, there is a [B, £] € go.% such that ¢ does not contain A.

Proof. Let g = [B, t] € ga-#. If t does not contain 4, then (3) holds trivially.
Now suppose that ¢ contains 4. Let us define the transformation & on dt as
follows: & = o if ti — A and & = [ti]ifti = A. Put 4 — 1T Then & [B] >
> and u does not contain 4. Denote go = [B, «]. We shall prove that g,
€ Ga?. Let [a1, 71] and [as, 2] be two different structures in S¢g. Fixed an s.
If o # [B], then [w, u ® £ € 8490 and if o = [B], then [t, ¢]eS,g,.
From Lemma 4.11, [4] we conclude [y, 7; ® £] # [az, 12 ® &) if oy # [B] #
#og. If oy = [B] oy, we have [t, £15 [o2, 12 ® &) because the equality
implies %: ¢t = ap —> ¢ which contradicts the non-cyelicity of %, Similarly can
be proved gy € g, if o [B] = w». This completes the prove of (3).

(4) If g = [B, t] € 9% and ¢ does not contain A4, then either .%- [B] = [4] >
= a 2t, Lot a = Hand Ly: o — t if & a->t)orgegss.

Proof. Denote M the set of all g € 9% such that (4) holds. If .- [B] =¢,
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then, according to the definition of Ly, [B, t) € M. Now suppose that B, ¢]
has a M-regular structure [8, 7] (see Def. 6.6, [4]) in .%. In order to prove (4),
it suffices, by Theorem 6.7, [4], to show [B, t] € M. By the preceding it suffices
to investigate the case t ¢ B and hence, [8, 11 €Syg. If B— 4 and o = g,
then f7 # A4 and because either Bt =zior [Bi, ril € M, we get Ly: [Bi] == 1.
Thus %, : a=f=t (and Ly: « >t if : o ->t), (1) holds and ge M. If it is
not the case B = 4 and o — B, then we get [B, t] e M as follows: define &
on df by putting & = [i] if P,: [fi] == 7i and & = « otherwise. According
to M -regularity of (8, =], we obtain in this second case Py a =75 and hence
Lo HE ¢, Recalling the definition of & we have ITE ¢ yf and hence /7€ e
€ ZoB. (If A = B, then B does not contain A4, Yf = {B} and « £ f=1IlEe
€ #yB). Therefore, Z,: [B] = IIf=t, [B, )€ M and the proof of (4) is
finished.

Now we introduce the following notation: If [B, t] € g%, t does not contain
4 and [f,7] € S,[B, t], then by B and 7 we shall denote the text J1£; and the
decomposition 11z, respectively, where &sand £} are transformations defined
on df as follows: If &: [i] = [A] = a = 1i, then & =« and (% is an a-de-
composition of 77 in %, ; otherwise &t = [Biland (st = 7i. From this definition
and from (4) we conclude:

(5) If [B, t] € 9.2, ¢ does not contain A and (8, 71 € Se[B. 1], then B € vf,
Zo:f =t and 7 is a f-decomposition of ¢ in L.

Now we can start the own proof of Theorem. First we prove that g,.% # A
implies g% # A. Let ga..F F# /.

By (3) there is a g = [B, t] € ga# such that ¢ does not contain A. Let
[a1, 71] and [ag, 73] be two different structures in S, [B, £]. Let us distinguish
two cases. .

l.4d# B If te B and [, 1] 3, [B, t], then, by non-cyclicity of %
and by (1), # +# ¢ # B. From this and from (6) we conclude 9.%0 #~ A if
{lea, 7], [oa, 2]} ¢ S, [B, t]. Now let [ai, 7], [ae, 2] €8, [B, t]. Straight-
forward from (5) we have 9a-L0 # A if & # @ . At last we have to investigate
the case & = @. By (1) a; = a3 and hence 71 #72. Next we prove 7; # 7,
and the inequality g,.%s # A will be proved for the case 4 = B.

Denote x; = 7y, 7 — ey for 1 = 1, 2. Since 71 # 72 there is the smallest

Jo—1
Jo such that 2o # 257,. Obviously jy > 1. Put » = 2 MErF) 4- 1. Because
: =,
a1 = d we have 1 = v and it is the case T vy = .n\._.w.o = .&m.‘.o = Zavgy. H‘Tﬂm.
71 F Tp.

2. A = B. We first set down some additional notation. By the assumptions
of Theorem there are ' € d.% and ¥ € ZC such that y contains 4. Define the
decomposition £ on dy as follows: Ei=1tif yi = A and & — [y4] otherwise.
Putu = ITE Asa consequence of the definition of £ we have that Lo [4] > ¢
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implies [C, u] € g% and [y, £] e Sy, [C, u]. The case %,: [4, 1] is, for in-
stance, if Z: [4] = a9 > ¢ and «, # «. For each [«, 7] € S, [4, t} we define
and 7’ as follows: o' = [J¢, ¢/ = 11{" where & and ¢’ are defined on dy in the
following manner: if yi =4 then &4 — o, ('t = 1; otherwise &4 = [vi],
& = [[yd]]. Put w = I1/1¢". As & does not contain 4 we have, by the previous
definition and by (1) %, : [C]l =o' >u, [« 1] e Se, [C, u). Moreover, 7, # <,
Hm. T3 «mu 2. )

Now we can begin the investigation of the case 4 — B. First suppose [, 1],
?sr“ 2] € Sgf4, t]. Then «; does not contain 4 and therefore, by (4), [a;, 7} €
P Tmf& if oy # o. That is GuLo# A oy FaFtar. If g =« 7 ag,
then [y, £] and [«', 7]] are two different structures in 8¢, [C u] and again
9.%0 # A. Similarly for the case o 7 a=ay. If oy = ot = a, then 7, # 7o
and [, 77], [, 7,] are again two different structures in Sy, [C, u]. Thus,
92-Z0 # A. Finally suppose a; — [A] # az. As & is not cyclic, then either
@ 7= o O & # £ If ¢ # o 5 oy then obviously [[4]. []] € Sg¢, {4, 1] and simi-
lacly as above we can prove [az, 19] € 8y, [4, t]; that is 9P # A. If t =
= a F oy, then [[C], [«]] and [7, &] are two different structures in 8y, [C, u).
If t # « = ap, then two different structures from Sg, [C, u] are [« 7,] and
[y, £]. Similarly for the case # [4] = az. This completes the proof that.
92L0 # A if g.L 5= A.

In the following part of this proof the converse implication, i. e. gaf # A
if gaP 7%~ A, will be proved. Let g,.% == A.

If Bed%,,8 €% B then by f we shall denote an element in ZB such that.
m}m vph; by s an f-decomposition of g in &Z such that for each i dg either
[fi] = &pi or Bi = A, £4i = «. Since A ¢ symb {LA} and (1) holds, g and &g
are &W&S.Embm& uniquely and .%: B == B. From this and from (2) we conclude
(6) [B. £ ® ] € 8uq if [, 7] € 8, g

Now let g = [B, t] € go.% and let [ar, 7], [&z2, 2] be two different structures
in 8,9.

First investigate the case o — [B] # a2. If t =1 then [[B], [t1] € Seg
and, choosing suitable s, also [&, 72] € S4g and hence 9aZ # A. Next we
shall investigate the case ¢ = £. Then [Z, &] and [&, &, ® 13] are, by (2),
from Sgg. They are different, and hence 9aZ # A if either I # @ or & =
# &, ® 12. Now consider the case I — & and & = £, ® 7. Since ay # ¢
(by non-cyclicity of %), & = £,, and therefore there is the smallest integer
tsuch that &4 &..t. This means that either &t =[Aland & i=aor §.0 = [4]
& = [o]. Since & = £, ® 12, we have ZLy: o - [4] in the former case and
Zo: [A] > « in the latter one. The relation Zo: « > [A] implies, by (2), #-
[4] = ¢ - [4] which contradicts the non-cyclicity of #. Since «¢ .%od,
there is. in the case %, : [4] > a an og € ¥4 A such that ZLo: g > . Thus #-
{4} = &1 >z and [4, ] € ga. 2.
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Similarly we can prove that g, # A if o # [B] = a2. Finally consider
the case o« = [B] # ap. If either & = & or Exy X1 F ¢, ® 12 then it is
easy to see that [B, {] €g,.%. Now let & — &2 and &, ®T1=¢, @ 120
Denote { = £, ® 1= &, ® 72. We shall distinguish two cases:

1. g 5% az. Then &, # &, Hence. there is an 4 such that £ # &t Now
there are two possibilities: either £ 0=1[4] and fi=a or £i=a and
&o,t = [4]. Consider the first possibility. Then

(7) Zo: a == i and Fy: [4] = 21

If [A] = &, then (7) implies #o: « == [A4] and hence .Z: [4] = a—[A],
which contradicts the non-cyclicity of .#. Hence %: [A] — ¢i. But it means
that there is an o € %94 such that Z,: [4] = a1 == 3. Obviously oy # «
and, moreover, £: [A] = oy == {i. By (7) we also have .%: ¢ == {i and hence
[4, li] € goZ. Similarly we can prove that g,% # 4 if Ei=a, £,0=1[4]

2. a1 = . Then v # 12. Denote r = £, =1, , ¥1== 171, 2 = ¢ 7. Since
£,.Q u= &, ® 12 we have zyxt = 290 for each ¢ ¢ dx. Because of T # T
it is also x1 7 x2. Hence, there is an i € dx such that 128 = i, 212(1 -
+ 1) = zp2(i + 1) and a j such that zi <j < (i + 1), Z1j # x3j. But it me-
ans that 7{#26+1)-1 and 1§#L2@¢+D-1 are two different a-decomposition of (1
in %y and hence in &, too. Thus [4,¢i] € g,.%. This completes the proof
of Theorem.

As a consequence of the preceding Theorem we have:

2.4. Theorem. Let # € €y and A be a reductible metasymbol of £, A ¢ LA.
Denote for every Bed #, e £ B, y B = {1, & is a decomposition defined on.
df such that for each i € df either £i = [fi] + [A] or & € LA and fr = A.
Denote L4 the language defined as follows:

d24 = d¥ — {4}, Z4B = {yp; e ¥ B}

If
(1) there are B € d.% and By, Bz € ¥ B such that fi+ B> and Ph10YPa+ A
then & is s. a. If (1) does not hold then £ is s. u . of and only if so is FA.

2.5. Remark. According to previous theorem in studying of the structural
unambiguity of languages from %» it suffices to consider only languages %
such that

(1) for each 4 € d.% either ¥4 — {4} or Aesymb Z4 or A¢symb U
U {ZB; Beds).

Indeed, if £y € %2, then we can construct a finite sequence %1, Lo, ..., Ln
of languages such that the language %; is an (4;, o;)-reduction of L
where 4;is a reductible metasymbol of ;3,4 +# oy € #4143 = 1, 2,...,m),
and for the language %, the condition (1) is already satisfied. If at least for
one of the languages %;,¢ = 0,1, ..., n — 1, condition (2.3.1) is not satisfied,
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then, by Theorem 2.3, % is not s. u. If for all languages #;,1 = 0,1, ....n — 1,
the condition (2.3.1) holds, then, again by Theorem 2.3, %, iss. u. if and only
if s0 is Zy.

This results with results of paper [5] show that in studying the weak struc-
tural unambiguity of regular languages from %. (i. e. languages such that
b (&, 4) # A for A ed?), it suffices to consider only languages #such
that
(2) 4 esymb L4 for every 4 € d¥ such that 4 ¢ symb U {#B; Bed #}.
Indeed, suppose that we want to Investigate the weak structural unambiguity
ofa Le%,. If £ is not A-s. u. (see Def. 5.5, [5]), then by Lemma 5.6, [5] is
not weakly structurally unambiguous, too. If & is A-s. u., then, by Theorem
5.12, [5], & is weakly s. u. if and only if the language #y, defined as in Def.
5.8, [5], is s. u. But for %, it already holds A ¢ U {Fy 4; 4 ed%o}. As it
was shown in the first part of this remark, the investigation of the structural
unambiguity of the language %, can be transferred, with suitable reductions,
upon the investigation of the structural unambiguity of a language %, which
satisfies condition (1) and, since A ¢ U {ZLod; A €dP,}, condition (2), too.

3. EXTENSION OF LANGUAGES

3.1. Theorem. Let &% be a language from %y, let 4 ¢d ¥, « eFA, 1<

M?M\@.NMN?N@%F@. Bm\mzmt& transformation £ as follows: d.%; =
=d& U (X}, 1B = FBif B¢ {A, X}, L4 = (LA — {a}) U {alii-D) x
X [X] X atztlin) @ X — {attd}, Then F1e%y (we shall say aboul
a simple extension of & or about (A, «, iy, 42, X )-extension of ), and ¥y is
8. u. if and only if so is &.

" Proof. Obviously %, is a language and % is a (X, o/ ) —reduction of .#;.
If %1 would be cyclic, there would be a ed¥) such that #;: [C]—[C].
By (2.3.4), we have (note that in proving (2.3.4) we have not used the assump-
tion that the language % considered in Theorem 2.3 is not cyclic), that either
L [C]=[C] or, if (' =X, & : afintd) s gt which contradicts the non-
cyclicity of . Thus, ¥ € %s. It is easy to see, from the definition of %,
that for .#;, for X and for «t) condition (2.3.1) holds, and therefore, by
Theorem 2.3, &) is s. u. if and only if so is .%.

3.2. Corollary. Let & €6 and let Ly, L, ..., L be a sequence of transfor-
mations such that o= L and, Jori=101,..,0n—1 % isa simple exten-
sion of Ly, Then Ly €y (Ln is called extension of L) and Ly is s. u. if
and only if so is £.

3.3. Remark. In studying the structural unambiguity of languages from %,
it suffices to investigate the languages such that
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{1) Az = 2 for each metatext «.

Indeed, let ¥ be a language from .. By suitable extension of % we can
obtain a language %y which satisfies condition (1) and, by Corollary 3.2, which
is s. u. if and only if so is 2.

Moreover, by suitable extension of a language # € %5, we can obtain the
language # satisfying not only condition (1) but also the following two con-
ditions:

2) If B ed#1, o, s € LB, oy # oz, Aoy + Aog > 2, then symb ARLV N
N symb {a} = A.

va If wr B, m&&r o mvﬁ\wwr [#2] mhwmwu ‘Ww =+ wNv Aoy + Aog > 2, then
symb {x1} N symb {x} = A.

Example. Let the language % be defined as follows: d.% = {4, B, £},
LA ={B,C, D], [E Al}, ¥B = {[C, E]}, LE = {l4]}. Let

Z1be an (4, [B, C, D}, 2,3, F)—extension of Z,

Fabean (4, [H, A], 1, 1. Q) —extension of ¥,
u@urmmﬁAm;ﬁ,mfw,wumv|mwam=mw9~0mpm\f
HM%

Zibea (B,[C,E],1,1,J) —extension of ¥,
Psbea (B, [J,E] 22 K) —extension of &,
ZLsbea (F,[C,D,1,1,L) —extension of Zs,

L
then % is the extension of & and % satisfies condition (1) to (3).
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