MATEMATICKO-FYZIKALNY CASOPIS SAV. 16, 1, 1966

A GENESIS FOR COMBINATORIAL IDENTITIES
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The object of this article is to prove the following

Theorem. Let
ai, 7 = Ou 1, Nv pR—

nd .
@ z,j=1,2,3,....m

be the given complex numbers with the condition that the numbers a; are distinct.
If we denote

n

S(m, n) = M (@ — x1) (@ — @) .- (& — ¥m)

= (@ — ap) ... (@ — ai—1) (@ — ag41) --- (@ — an)

3

then
n n+l
(1) Sn4 Ln)=> a— %,
i=0 i=1
(2) S(n, n) =1,
(3) Sim,n) =0, m < n.

The next sections contain two proofs of this Theorem. The first proof uses
the mathematical induction, the second proof is based on the calculus of’
residues. By the method used in this proof we can evaluate also the sums
Sn + 2, n), S+ 3,7), ...

Finally, using the above Theorem, we derive in the last section some com-
binatorial identities.

2
a) First, we can show that for S(m, n) the following recurrence holds

4) Sim,n) = Sm — 1,n — 1)+ (an — 2w)Sm — 1, 1),

m>1, n>1.
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For this purpose We write successively

n-1 (@ — ) (@ — z2) .- (@ — Tm-1) (a; — @n 4 an — Tm) +
rﬂ?x; §v - Mc ?: S Qov - AQQ. = Q&lwv Am:“ —_ Qibv eed AQA — Qﬁv
(an — #1) (@n — x3) -r (@n — Tm) _
Aag.uAEVAag‘l.a: (@ — On-1)
g AQ& e &wv AQM —_ va - @\HIWUS\!L\\\‘ I

e eomwe
£ (g — o) - (9 wi) (s — aw) - (@ = Gn)

Aa: — .&D AQ& — Hmv s AQA - .&5\5 4

+ {an — o) £t (@ — Qo) --- (@i — i) (@i — @ 1) .- (@ — @)

o fan = En) gy, m— 1) F
. ?«,: — Qﬁ\wv

(@i — x1) (@i — PR (@1 — Zae—1)

4+ (an — REVM (@i — ag) - (a;i — ai-1) (@i — Ait1) - (ai — an)

= 8m — 1, n— 1) + {(@n — zn)Sm — 1, n)

so that the required relation is proved.

For the following we need also the expressions ‘MC‘VSY : V H

Denoting
7 g
— ‘\\\\l \\\‘\\\l 3
A} = .Muo?: — ag) --- (&g — ai—1) (@ — a) .- (@~ @)
1 1
B(n) = MM, @ — as T — we) (o — ais1) --- (@i — @)
we have
2 a; — 41 .

G SEm = Mc T o) e ) (04 an)
= A{n) — x1B(n)

and

o — HH
= \\l\\\\\\\\?\\\\\\\\\ =
8L, m C -4 (az — @0) -+~ (@ — i) (@i — ain) - (@ — an){o — )

e bt

e e e el

1

e

x*: AQS = ﬁ.wv [T e
(@pe1r — @o) (Gn41 — 1) ... (@nr — On)

n+1

1
= B{n) 4 (@Gns1 — 1) M o P

L) ?:. e aow . Q: 57 Slwv Am: 5 na+wv . AQ& = QQI.D

= B(n) + (ap+1 — &pvm?s 1)
so that .

{6) S(1,n + 1) = B(®) + (@n+1 — T1)B(r + 1).
b) Now we prove that
(7) S(1,n) =0, n> 1
We proceed by induction. Because
8(1,2) =
ap — 1 ay — 21 as — ¥1

-t 4 =0,
SolSIaol&v (@2 — o) (a2 — a1)

(@ — ao) (@1 — @2)

the assertion is true for n = 2. We suppose further that (7) holds for some
n = 2. Because z; is an arbitrary number, this assumption says, with respect
to (5), that

(8) B(n) = 0.
Let us now consider the equation in the variable z1
9) S(1,n + 1) = 0.
From (6) with use of (8) we have
8(1, n + 1) = (@an — 2)B(n + 1)

so that this equation has the root 1 = @n+1- But S(1,n+ 1) is a m%bﬁbwa&o
function in a; so that (9) has also the roots a;, © = 0,1,...,n The equation (9)
of degree 1 in the variable z; has more than 1 roots, therefore it is an identity.

We have shown that if {7) holds for some 7 > 2, then this relation holds
also for n + 1, hence it holds generally.

¢) To prove the correctness of (3), we proceed by induction with respect
to m. Because (7) holds generally, the relation (3) holds for m = 1. ‘We suppose
now that (3) holds for a given m = m' > 1andalln >m and we will prove
that also

{10) Sem’ + 1,7) =0, n>m + 1.
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But in virtue of the recurrence (4) we have
Sim' + L, n) = Sim', n — 1) + (@ — @ )S(m', 1)

and both the sums on the right side of this equation are zeros in accordance
with the assumption because from n > m’ + 1 it follows that n > m’ and
n—1>m. . .

Thus the relation (10) holds, the induction is finished and the relation (3)
established.

d) It remains to prove the equations (1) and (2). Because

g — X1 ay — Y1
g =1

ag — a1 ay — 0o

81, 1) =

H

the equation (2) is true for n = 1. Supposing that it holds for some n, we cank
show that also

(11) S+ 1,m+1)=1
But according to the recurrence (4) we have
Sn+ 1,7+ 1) = S(n, ") + (1 — Znar) S0, R+ 1) = S(n, n) = 1
because in virtue of (3) S{n, n 1) = 0. Therefore (2) holds generally.

Tn the same way we prove the equation (1). For n = 1 the relation holds
because
— ) (@ — X a1 — T1 @ — T2)
rﬂﬂw ,.: — E lT \W\W\'\F\l = ag AT ay — A,ﬁw |T PMV
’ g — M1 ap — o

Now we suppose that for some n

S(n + fiHMElMﬁ
i=0 i=1
and we will show that

n+1 n+2

Sn+ 2,n+ SHME\.Mﬁ..
o

But using again the recurrence (4) we obtain

S(n + 2,7+ 1) = 8(n + 1, n) -+ (@n+1 — Fniz) S(n -+ Ln 1) =

n n4+1 :W,H 742
HME1M§+Q:+HIKH:.+&“N®&1M§
i=0 j=1 i=0 j=1

because in virtue of (2) S(n+ 1,7 4+ 1)y =1 (1) holds therefore generally.
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Let

flx) = (x — %) (& — Z2) .- (& — @) = 2 = cam-l 4 GprmTE — .

and
glx) = (x — ao) (@ — @) ... (& — an) = xntl — e 4 T g

be the given polynomials and let the numbers a; be distinct.
We wish to find the values of the integrals in the equation

(13) =

where ¢ is any circle with the center at x = 0 having the radius so large that
the points a; are all inside ¢ and ¢’ is & circle with the center in the origin.

The value of the left-hand expression is equal to the sum of residues of the
function

x
Nﬂ?& = l.\_Mnqu
g(@)
at the simple poles a;. If we denote by 4; the residuum of F(x) at a;, then
x aq
\?HEEA@.\S.V\A v = \\A : ==
s glx) 9@

|| AQN == RHV AQ& — &wv . ?S. = .&Sv

o MmmAu R
(a7 — @o) --- (@ — @) (@ — @int) - (@ — Ca)
so that the left-hand side expression of (13) equals S{m, n).
To evaluate the expression on the right side of this equation, we denote

x@
%QW
y

Gly) =

and after some modifications we have

Gly) =yl 4 (o — oy + (02 + 72 — mo1 — T2) Y+ )

We are now in the condition to prove the required relations (1), (2), (3)-
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1f for example m << 7, then n — m — 1 = 0 and G(y) is an anylytic function
inside ¢’ and the mentioned integral is zero. We have the relation (3)

S(m, n) = 0, m < .

Tor m = n the origin is & simple pole for G(y) with the residuum 1. Thus

S(n,n) =1
and this is the equation (2)-
Finally, for m =n + 1 the point y = 0 is a double pole for G(y) with

the respective residuum 73 — 1 so that
” n+1

M§+f3HSlSHM§.\M§..
j=1

i=0
As we have already mentioned, we can evaluate by the same method the
sums S(m, n) for every m > n. In fact, if we have m = n + 2 for example,
the origin is a pole of order 3 for G(y) with the residuum
o2 + (T — o) — T2
so that
S(n + 2,n) = oz + 7T — 01) — T2

and so on.
4

On the basis of the Theorem we can now derive any binomial formulas.
a) We put
=14, rp= —%,
 being an arbitrary complex number. Then
(@ — 21) (@ — 2) --- (G — Tm) = (& -+ O™
Ao:. s ch Agﬂ — QHV AQ;.. = Qs.luv = 1!
AQA e Q&+HV AQA o=t Q&+mv Aﬁs. = Q:V = A‘H%«l_?« e 3_

so that
Sy = LS i + i
| Mc i)’
Moreover
n m nn + 1
M§'|M§.H3§+ A v.
i=0 j=1 2

The equations (1), (2), (3) give the following results:

(15) MOT:% 4 g)ntt @ — (—1)n + 1) |z + WJ

36

$ e () = o

=0

S (— 1) + im @ — 0, m < n().

=0

With — instead of x the last two equations (15) give

(15') S (— e — i GV = !,

i=0

S (— 1) — %3 =0, m<n.
i=0 v

(*) The first equation of (15) is a simple consequence of the second. In fact, if we denote

Sim, n,z) = 3 (—DHz + 0" 3
i=0 v

[P e

we have

St + 1,m @) = 3 (— D@ + 0@ + 0 3 =¥ (i + s@ +
1=0 =0

2
n e 1 n—1 n—1
+ Y (—Die + 3=A. v = (Dot — 0 (—1)z + 1 +9)" A - v =
| i—1 i=0 7
= (—1)yren! — aSm,n — Lo+ 1)
so that for the sums S(m, n, x) the following recurrence holds
S(n + 1,n, ) = (=Lt ant — nSn,n — 1,z + 1)

Now putting % — 1,n—2,...,2,L0 instead of nand © + 1, ® 4+ 2,240 instead
of %, we obtain from here

Smn,n — Lz + 1) = (—rt(z+ 1) (n— D —
lA:l:mA:Irs\w.aanT

9:!rslw.a+NVHT:.1§+5§15_|
lﬁglwvmaslw,:lwgi-wv.

. S0z +n)=a+n.
Finally, multiplying these relations successively by
1, 13._33 — 1)y eens (—1)*n!
and adding the thus obtained results we have
S(n + 1, n, x) = (—1)rent + (=) (& + Lnt 4+ .o
(1) (@ 4 nnl = (— 1yt {(n + Do + WSA\: + D} =

= (=1 (n -+ 1) Aa " w.v .
2

The first equation of (15) is thus derived from the second.
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Tor arbitrary real integer x these formulas are well-known. See for example
1] (p. 65, formula 4).
b) We put

Qi = i, ;= —% \lwv
# being an arbitrary complex number. Tntroducing the symbol

We=yy—1 .- — k+1)
we have
(@i — 1) (@ — Z9)

o @y — Tm) = (x + m + -
Further we have as in the preceeding case

AQ\@. = Q.OV AQ& = QC Am?“ = @s.\»v = \:.

A,S — ag) (@ - @s2) - (@i — @n) = (=1)yin — !

so that
x4+ m-4t
S(m, n) = \:;lM (—1) A v A o v
_ .wa__l n Alluvsﬁ V AP R o:ﬁ\u\! n — sv
n!
i=0

Moreover

n+1

MS\M~§H§+~:H+3+ 1).

The equations (1), (2) and (3) give the following results:

m () ()

(—1)@ +n -+ 1) for m=mn 4+ 1,

(16) = { (—1)* . for m=mn,
0 for m<m,
or
z+m+n—1
‘ 1) e
ae) 25 e )
z+n—+1 for m=mn-+1,
=1{1 for m=mn.
0 for m < n.
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These formulas are all special cases of the combinatorial relation

o & n\ (z -+ 1) _ N
aw) Sen() )=o)

See [2].
¢) We put
a; = i -+ 1%, ¥ = —x — ]

« and x being arbitrary complex numbers. Then

A.‘Siv\ASlTSeLTQslTsmVS
() (a0 — ) ... (o — ae-a) = i (@ 2= A
AQ — Qg rwv AQJ — QA ,Nv AQ\. — Q\ﬁv -

= (=1l — N@+n+ )n-i

(i — 71) (@ — 22) -

so that

(x +m + ai + ®)m

S(m, n) = (— 1" MAL \\

illn — e + 9 — e +n -+

Ny AJVNA&+§+§+iV
A\ V “mt M A|\~v@ 7 m

NN

(mh2 & . ﬁaufwm\JAnufs\.m»J.
i n—1

3w+m:+w\
3

Moreover
n+l an

MS Mu& §+58+\Ml+

The equations (1), (2), (3) give the following results:

2 a+§+~+§.+%v
n-+1

i n v
() : A,MOA 1 Q}Twsl\w a+31-.

an n? 4+ 2n -+ 3
HAlea:M &l_u\wl.T 3 ,

3%& 4-n 4 e+ %v
W (—1) i n

= A\S:S_

S R

—o at+2—1 at+n+t
) n—1

)n
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n ki v
M A\C~l|s\|\\\||\\\\|\l = 0, m < n.
1=0 v

As\vwﬂ&xfip‘fns.;.?
a4+ 21— 1 a-+mn+1
7 n—1t
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