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ONE-POLE APPROXIMATION FOR HIGHER WAVES
AND THE CORRECT THRESHOLD BEHAVIOUR
OF PHASE SHIFTS

MIKULAS BLAZEK, Bratislava

Treating the nonrelativistic elastic scattering, the Jost function is approxi-
mated by one pole and it is emphasized that this leads to the threshold be-
haviour of the phase shifts 7u(k) expressed exactly by the formula % cotg m=
= oy + bik? (the a;’s and b;’s are constants) for any Physical I = 0. This does
not correspond to the elastic scattering for I = 1. The correct behaviour
of the phase shifts for low energies expressed by the effective range theory
generalized for higher waves k2i+1 cotg m = oy 4 Bik? + ... can be obtained
by considering more poles even when in the last series expansion only the
first two terms are under consideration. However, in this case the pole para-
meters must obey some conditions. The connection between the number
of poles and the correct threshold behaviour of the phase shift for a given
angular momentum is discussed. Lastly the Jost function approximated by
more poles for higher waves is treated. The derivation of potentials and phase
shifts is performed by solving the Gelfand-Levitan equation.

I. INTRODUCTION

The solutions of the inversion problem of the nonrelativistic scattering
theory can be schematically divided into three groups: The solutions using
a) the integral equations, b) a particular Ansatz usually based on the supposed
analytic properties and ¢) the first Born approximation or its improvements.
All three groups are often generalized and extended to more complicated
cases. The presented paper belongs to the first group of mentioned methods
and its results are in close connection with the ones of the second group.

By searching for an appropriate model to the given scattering data one
often proceeds from the one-pole approximation for a function under con-
sideration. We use a one-pole approximation for the higher-wave Jost function
and by means of the Gelfand-Levitan equation the potentials and the phase
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two cases corresponding to the Symmetrical and asymmetrical Gelfand-
Levitan kernel Py(r, £) and for the assymetrical case we emphasize the behaviour
of the potentials both near the origin and near the infinity. Generalizing the
last case it can be shown that the potentials can have an assymptotic tail
e.g.r3 and r-2 respectively; however in recent literature there is absent
a detailed investigation of the behaviour of the potentials resulting from the
solution of the inversion problem in scattering theory within the bounds
of the first group mentioned above.

In order to be self-contained we derive in this paper after establishing some

basic relations, in Sec. 3 the Gelfand-Levitan equation for higher waves

correct behaviour of the Phase shifts for low energies.

II. BASIC RELATIONS

The Schridinger equation for the radial part of the wave function can be
written in the form

" d2u(k, r) )

dr2 r2

— V| w(k, 7} =0

where k2 = F is the energy (/2 = 2M = 1) and V — V(r) is the potential.
The repulsive barrier is explicitly written down.
We denote
Zu(z) = p(z),
() = wy(z),
2h{(2) = E(z)

where j;(z) and n(z) are, respectively, the spherical Bessel .m:m Neumann
functions and A{®(z) are the spherical Hankel functions of the second kind.
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In what follows the following relations will be used:
L. The free motion functions:
a) the regular solution ok, r) = g0k, 7)

(2 + 1

Fi+i

() ok, r) = alkr);

b) the Jost solution Sulk, r) = fOk, r)
Fi%(&, 1) = i~e+np® (kr);
¢) the Jost function Silk) = fOk)
(20 + 1)1t
ik

@) fOk) =

2. The asymptotic form of the regular solution

{
k)] sin | kr — anl 4+ g,

(4) wi(k, ) ~

r—oco @

Hbanonm:omsm the function Fy(k) (which is often referred to as the Jost, funetion

(1, [6])

Julk)
() Fyk) = =
JiOk)
we express the phase shifts n(k) in the form
: 0 = ;
0 m ImFy(k)

The relation between the elements of the S-matrix 8y(k) and the Jost function
Jilk) is the m.o:oémﬁm

@Q& = ol .\,NQQ = o2k
Ji(—k)
We have
; , l
k) = fuk)1e™ D, sy(k) = (k) — ;Ml

3. The completeness relation for the regular solutions

L e
(7) . \§§:§$iﬁagu;¢wi*

— oo
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For a given angular Inomentum /, the spectral function e(E) in the case when
there exists besides the continuous spectrum for positive energies also a discrete
spectrum with eigenvalues % — —lxg, s> 0 s=12.., m) is expressed
in the form . :

1 k

da®) 7 © |f@)e

& /HWEW.%EL@
8=1 ’

for £ > o,

forE <o

‘(let g(— oo) = 0); the normalizing constants M, are given by M-2
® do(#)  do{™(E)

= \, [ —ins, 7)]2 dr. For the free particle case we have
]

- _ i Kilr, 1 PN .
! im t — K,(r, — =
{ ) 150 k) kot o) kot

or .

(13) Kir, 0) = 0.

The conditions (11), ( SV and (13) are equivalent to the Schrodinger equation (1)
with boundary condition for the regular solution. .

III. THE GEL'FAND-LEVITAN EQUATION FOR HIGHER WAVES

We generalize here briefly for the higher waves the slightly modified ver-
sion [3] of the Levinson’s derivation T2] of the Gelfand-Levitan equation
which was performed for s-scattering.

Similarly to ( 10) we can write

(14) Nl 1') = il ') 4 [ Nufr, puih, gy
0 5

Qrmwmero_mowb& N,ﬁ,ﬁ ermmmmEFﬁ. properties as K;(r, t). We multiply (14)

by @ik, r) and ‘mbammwpem (aceording to Stieltjes) with respect to gi(E). Using
the completeness relation (7) we obtain for 0 =r<r

+oa :
(15) [ 2 #yutt, rydouy = o.

dE dx

1 C dpO(E . v
= k for £ > 0, o) =0 for £ < 0. We introduce an

T Ok dx
auxiliary function oK)

. % 1 1
= __, e for >0
®) don#) de®) de{”(k) = m | fk)e LfE7 ()12
| B B dou(E
. I BN _ da®) for £ < 0.
dE
For the free motion the completeness relation (7) has the form
+oo 20
) P 19, r)agPE) = 2 | pullryuaor)k o — 1
T ¥
—0 0

4. The regular solution oi(k, r) can be expressed by means of that for the
free particle case (2) in the form

;
(10) wilk1) = 9k, 1) + [ K, )9, tyas.
0
It can be shown that the kernel Ki(r,t) satisfies the following conditions
P2K(r,t K (r, ¢ W+1 W41
(11) 7onE  PRng e ) W+ Ki(r, 1) = V(r)Kyr, 1)
or? ot? T2 12
dKy(r, 7)
(12) 2 = V()
dr
-and
320 ,

In (15) we express the regular solution @u(k, ) in accordance with (10). We get

“+ oo 1 + o0
I #89k, 9190k, ryaguary + JatEitr, ) [ 490k, vy, gy — o
— 00 0 : —c0

We replace the spectral function o(B) by means of ai(E) (8). Taking into

account (9) we get
+ o0

(16) | [ #8990, ryaomy 1
r + o0
+ [k, b) [ ok, o, r)doB) + Kifr, ') = 0.
0 —o0 ) ’

We introduce the function

+ oo
(17a) Pifr, ') = [ 40k, +)p0z, r)doy(E)

— oo
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for

(17b) r <y,

By means of (17) we obtain from (16) the Gelfand-Levitan equation in the
form

(18) Pyr, ) + [ Kulr, P4, )38 + [ Kitr. 5)Pe, e

0
+ Ki(r,7') = 0.

If the kernel Py(r, #') is symmetrical we have

(19) Pr, r') + [ Kofr, PUE #)dE + K, #') — 0.

0

If we consider for instance the problem mentioned above, (8) ,we have

Pur, 7') = 2 MEGAN~ins, )N —ing, 7) +
R §=1 ’
. 2
(20) + =
T

0

1 1
[ filk)[?

{0) ON1. 1127
O |7 A kR

where the free particle regular solutions #® are given in (2).

Solving consequentially the inversion problem we should proceed as follows:
Postulating the basic integral equation (18) we have to determine the pro-
perties of the solutions and potentials obtained. This, however, is rather
hard to accomplish. We consider the potentials obtained in the one-pole
approximation of the Jost function for higher waves. Some of their properties
are being emphasized. However, for the correct threshold behaviour of the
Phase shifts it is necessary to consider more poles in the Jost functions. Namely
for a given angular momentum ! we must take into account at least [ + 1
poles and between them ! conditions are to be satisfied in order to obtain
the correct behaviour of the phase shifts for low energies (1, ~ o k#+1). However
the potentials obtained by considering more poles in the Jost function are
in the higher-wave case more extensive and cumbersome; for this reason
we give for [ = 1 only the solution of the Gelfand-Levitan equation (18)
assuming there are no bound states.
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IV. ONE-POLE APPROXIMATION

In what follows the discussion leads us to the Jost function of the form
Julk) = fOk) . (& — iB){(k — ix) for various values of « and . In particular
cases the phase shifts can be determined with respect to (6) or by direct
computation; this is performed mainly when the potential induced does
not satisfy the usually imposed conditions (e.g. the existence of the first
and second absolute moments).

A. Symmetrical degenerate kernel

As the first example of the use of the Gelfand-Levitan equation in the case
of the general (integer non-negative) value of the angular momentum we
consider the simplest case of a symmetrical degenerate kernel Py(r, ). Let

Pofr, &) = Ai(r)dy(#)
and with respect to ( 13)

(21) . Ay(0) = 0.
Using the Gelfand-Levitan equation (19) we get

(22) Kur, & — — Ay(r)Ay(&) .

r

Lt [Tdoypar
0

If we put (22) into (11) we obtain
d24y(r) I 41
1 ( )

dr2 72

Ay(r) = const. Ayfr) = —p2 . Ay(r).

Taking into account the boundary condition (21) there are the following
possibilities:

la) p2 < 0 .

1b) p? > 0 M p% = 0, . then Aur) ~ wlpr);
2.p2=0, then Ay(r) ~ rit1,

Ad 1. Let

Pufr, &) = Nu(pr)u(pé)

Q< = const). Considering (22) we have

Kir, &) — —2Np . pupr)m(pé)

2p + Nprlp(pr) — malpr) . jun(pr)]




One can obtain the potential by means of (12)

d

uilpr)

V(r) = —4Np — P —
dr 2p + Npr{u¥(pr) — =1 (pr) pra(pr)]

and the regular solution oi(k, r)
expansion of this regular solution
with (4). The computation is straj

by means of (10). From the asymptotic
we get the phase shifts (k) in accordance
ghtforward but a little tedious. We obtain

for the case la): Let p = —it, v > 0. Using the formula

\.:ANV ~ 8in w; +

Z—»00

k1

W+ 1) cosay,
— e

+ <

where W=z — leﬁ we have for any I exactly the relation

1 1

(23) keotgmy = ——7 4+ —J2,

With respect to (5) the relation (2

2 2t
3) corresponds to the Jost function

k4 it

Julk) = fO) ——;

k—itr -

for the case 1b): The use of the familiar formulae leads to tg7, =0 ie.

filk) = fO(k) (almost everywhere)

. There exists one bound state with posi-

" tive energy, the continuous spectrum is absent (similarly as in [1] and [3] for

s-scattering).
Ad 2. We put
. Py(r, &)

= Npi+l g+

(¥ = const). Denoting 4 = (20 4 B)/N we get

NW«Q.“ Mv

and

V=202l + 3

— Np+1g+1

1
1 IT — . 2143
A

248 — 20(1 + 1)
(1243 4 )2

Jrei+1

This potential was explicitly obtained also in [1]. Making again use of the
asymptotic expansion of the regular solution we obtain tgy=0ie. Fik)=

Jilk)

()
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= = 1. In this case there exists a bound state with Zero energy.

B. Asymmetrical degenerate kernel

We express the Jost function in the form
, : k—ip
(24) Juk) = fPk) ———.
v k— ix
Let us suppose there is no bound state and « > g > 0. Using (24) we obtain
from (20) : .
a2 — g2

B ipa(ige)

Pyfr, §) = (—1p+1-
Further putting ,
Kfr, §) = Bi{r)u(ing)
and using the formula (A 2) we obtain from (18)
| b
Bifr) = —-i(e? — HEP(—ipr)
o . Dy ;
where :
Dy = Bu(iar)BD ( —IBr) + opua(ier)EP(—ipr).
This leads to the Eckart's potentials for higher waves

2(a2 — p2) 2l ; 0
D | T B Dt G (B 4 B

i

(25) Ve = V(r) =

s Aon@«vm . Q&mlT.ﬁmluv S

i_e.oEmseﬁrﬁm%xlaaEa nwmA}vm,.@wm (B2,
For the potential (25) the following relation holds ek

o o - —2 .
S Velr—> 0y = ———— (a2 — g2) 1 O(r
E( ) o211 (e — £2) + O(r)
and ‘ .
. M4 o ’. ~% ' ®|m§.
(26) Ve(r - oo) = (—1)1+1842-——— L ¢ 90r +0
, o+ g 7
This w&oiu.m_. exponentially falls down at infinity. We r@g,%ﬁwrg o
. wooGNQNHIFJf\%. i
. / «— B «— g .

We consider another rather pathological case when



k—ig
k

Julk) = f{(k)

k
and cotg 5, = —-— (the Jost function has the behaviour Julk) k)
. N llvo )

B
We have ,
| Pur, &) = (=11 . . BO(—ipruipe)
and taking K,(r, ) = Cu(r) . (iBg)i+1 we get
BB~ ifr)
(iBr)i+1 B (—ipy)’
In this case the Ppotential is given by

QNAQ.V =

. . 262 [2(4 1)
27 z = = — d
(27) Ve = V() B r Bia B+ B, 4 B2,
there is &, = g% —ifr) and B2 = [EP(—ifr)]2. For the Potential (27) it is true
262
Va(r— 0) = i + O(r)

2l + 1

and
2

(28) Va(r— oo) = ey +0 lwf/.

72 73 \

The potential (27) in the s-scattering case was obtained in [5], [3].

V. THE JOST FUNCTION WITH MORE POLES.

In the case without bound states we consider the Jost function(1) in the form

m
] k—i
(29) 1ilk) = 10 - | H b
kE— o,
s=1
(1) Solving the inversion problem for higher wayes by direct substitution of the
assumed Jost solution in the Schrédinger equation (using an adopted Bargmann’s

1) =106 + 3 - Mm.m
s=1 13,
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|
m
]
!
}

where all §; > 0. We get

Pifr, &) = (=103 o . B (—ifar) . palifisf)
8==1

where

the K, s represent the zeros of fi(k) in the upper half of the momentum plane k.
Using (29) we get ’

my
- 2
P Rwlmuw .—- ._ywﬂw'%u
s == .
mm d \w_mln\ww
t£s

‘The solution of the Gelfand-Levitan equation (18) has the form

Ky(r, &) = W_U Xs(r) . puliog€).

8=1
We use (A 2) and the relation
my n my , .
avfy =T o — B2 o« — 2
I 5 s s w“f s§=1,2...., my.
Ral.%.c Q.nll%e %«l%e
0=1 v=1 ¢=1

t#v

‘We obtain a system of linear algebraic equations for the functions Xs(7)

ny H .
M Xelr) ———[Bspulioer) EP (—iBsr) + a1 (iowr) EP(—ifer)] —
‘=1 % — .

—iBA(—ifr) =0 (s=1,2,...,n)

which is a high-wave generalization of the system of equations obtained
for s-scattering in [8].

In the case under discussion it is possible by an appropriate choise of the
parameters to obtain potentials with an asymptotic tail = where n > 3;
it was mentioned also in [5]. However, if one has e.g. V ~ r~4,the comparison

with the exactly solvable Schrodinger equation for the case V — const/r4 {9]
is rather cumbersome.

VI. DISCUSSION

" The Jost function approximated by one pole leads to the phase shifts expres-
sed exactly in the form k cotg 7 = a1 + bik?. However this is not in agreement
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.with the theory of the elastic scattering; the theory of the effective range
of nuclear forces gives in this case (e.g. [10], p. 267)

(30) k241 cotg gy, = og 4 pk 4 ..
With respect to (6) one concludes that the higher the waves the Emﬁﬁ.

number of poles must be considered. In this case, in general, the kernel ( 17) .

is not symmetrical and the expressions obtained by means of the Gelfand-
Levitan equation are not so simple as they are for a one-pole case. From the

a) to counsider at least I 4 1 poles and b) all pole barameters are not free as the [
conditions must be fulfilled. 4

The potentials (25) and (27) with their generalizations are finite in origin
and at infinity they.can have an asymptotic tail 7-2 and r» (5 = 3) respec-
tively. It would be convenient to solve the inversion problem for singular

Carter’s statement holds (3.

Lastly, it is obvious that ,nrm rational Jost function for every angular
momentum leads to the potential ¥ — Vi(r) which induces in the Schrédinger

equation Hy = (T - U )y = By a nonlocal interaction term U y of the form

o Qb&v - - lv lv - rv -> ®
Uy= . Ulr,ny . n)p(k, r; 7% . %) where %(r,n, . n) =3 (214 1) Vir)
0y 4. , o B <0

Pyny . mv (the P, s are the Legendre polynomials).

APPENDIX
gww solving the Gelfand-Levitan equation and computing the given expres-
mwoﬁmw mainly the following relations were used: = . .

1 1 1 ' | )
@MMXNV =2z. N@MmXNV — E.TCQLNM ) ¢+ m.v...
. 2.8l (1 — s) (iz)s

§=0

(3) D. S. Carter proved (see [5] p- 333): If a potential satisfies the conditions:

o
a) ‘.‘.win |P(r)] dr < o0, b) there is no zero-energy resonance, i.e. Jo(0) + 0, then the
ol . -

I Sy -
< 0.

mo.&osmﬁm r.oE,,m“ :B -
Ao k=0 pay
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(1) cosay (¢4 2)! sin w;

(A 1y #iz) = zji(2),~ sin w; + 3 P (—2 sm
' :
_ @43 coswt 4+
(I —3) 4823
where w; = z — -MI land [11]
(A2) ) (@vi-1(z) — pa(z)n(z) = 1,
1
% Mi(az)Ny(pz)dz — w!fmm [BMy(o2)N11(B2) — oMy y(az)Ny(Bz)],
o —

[ (1o = W {2 M) — Mya(o2) Mys1(0z))}

where M;(z) and Ny(z) are any linear combinations of miz) and w(z) with
coefficients independent on z and L.

REFERENCES

{1] Moses H. E., Tuan S. F., Nuovo cimento 13 (1959), 197.

[2] Levinson N., Phys. Rev. 89 (1953), 755.

[3] Bla%ek M., Czech. J. Phys. B 12 (1962), 249,

[4] Cox J. R., J. Math. Phys. 5 (1964), 1065.

[5] Newton R. G., J. Math. Phys. 7 (1960), 319.

[6 Barut A. O., Ruei K. H., J. Math. Phys. 2 (1961), 181.

[7] Lénik J., Czech. J. Phys. B 14 (1964), 667.

[8] BlazZek M., Czech. J. Phys. B 12 (1962), 258.

[9] Spector R. M., J. Math. Phys. § (1964), 1185.
[10] Massey H.S. W., Theory of Atomic Collisions, Handb. d. Physik 36, Berlin 1956.
[11] Morse P. M., Feshbach H., Methods of Theoretical Physics 11, New York 1953.

Received November 24, 1964.
CSAV, Fyzikdlny dstav
Slovenskej akadémie vied
Bratislava

329




OITHONOJIOCHOE Evsmbsvxwm&m PN BBICIIUX BOJIHAX
W IIPABWILHORE IIOPOTOBOE IIOBENEHUE PA30OBBIX CMEIIEHUN

Muxynamr Bramex
Pesome
PaGora BaHUMAETCHA ynpyrum PaccennmemM Hepemsrusmercriy Hacrun. Opaonomocros
npubiskenue Gyurmuu Nocra BEMICT K HenmpasmibRoMy TI0pOroBoMy nopegenmo $azoBunx
CMEIEHNE TPU yraoBrx MOMeHTax I, Gonpimx Hyna. Ipasunsmoe ToBeneHue fazopmx

CMeIme it pU HuaKHX SHEPIUAX MoMkHo OOJIYYUTH TONLKO MHOTONOMIOCHEM mpuGmmke-
HUEM, N0 MeHbUIeHl Mepe (T + 1)-momocazmm npubamsmennen, mo TOJTIOCHEE  Mapamerphr
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