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ON A PRODUCT OF SEMIGROUPS

BLANKA KOLIBIAROVA, Bratislava
To Professor A. D. Wallace on the occasion of his 60th birthday

The &E. A.um the presented paper is to study the Structure of semigroups
m.oE Definition 1. Some special cases of semigroups of the studied type are

given in Theorems 2630 The direct product of semigroups is also a special
case (Remark 2).

Lemma 1. Let " pe semigroup. To eack element @ of I" we assign a sems.
group P, . Moreover let g set ® of homomorphisms @a(, B e I') be given: @5 s
a.~8§o§o§\~%§ of Py into Py, Let €0 iff « — B, or there exists Yumﬁ
with oy = # or ya = . Let the set & haye the following Pproperties: 1. For o c I
Msn denotes the identicql mapping of Py onto Py. 2. If Jor o, 8,y & I' there exist
in & @03838@3.%33 5 ¢, o5 then, ewem = ¢7. Elements of Py will be denoted
N.V.c (x, «). Let P be g set-theoretical sum of all sets P,. Define a multiplication
on mv.am Jollows: (z, a) (z, B) == Pl @)@zs(x, B). The set P with this mult;-
plication is q semigroup. . i

The proof ig easy.

Definition 1. 7%, semigroup P from Lemma 1 will be called the product of sem;-
groups Py over the semigroup I,

w.oEmww 1. In case P, have EmE@oS:aw“ such a construction ig always
.%o%:&? It suffices to take for ¢f that mapping under which the image P,
1s an idempotent of P . ) . ’

Remark 2. A special  case of the product from Definition } is the direct
product @ x I of the semigroups @ and I' This can be obtained by taking

{in Lemma 1) the semigroup ¢ for P, for all « € I"and the identical mapping @
onto @ for the homomorphisms 5.

let there exist a homomorphism @ of P, into P;. Then P from Lemma 1
18 a semigroup.

In what follows let I" be a, semigroup of idempotent elements. The elements
of I" will be denoted by e (with indices, if needed). In this case, each semi-
group P, is a m:_ummgmmwosw of P.

We shall obtain now some of the properties of P,

Theorem 1. Let J be a left ideal of P. Then J N P, is o left ideal of P,. There-
Jore, the ideal J is the union of left ideals (and thus of semigroups) of the sems-
groups P,. )

Proof. We shall denote J A P =J,. Since J, C P, and P, is a subsemi-
group of P, P,J, C P,. Since PJ.CJ, PJ,CJ,. Hence Je is a left ideal
of P,.

Similar assertion holds for a right ideal of P.

Theorem 2. Let each semigroup P, have a unique idempotent (i, e). Let L be
@ left ideal of I. Let J, be o left ideal of Py(e € L), where J ¢ 18 @ finite semigroup.
Then we can construct at least one semigroup which is the product of P, over T,
where U J, is a left ideal.

ecL
Proof. Let ¢; € L, then for ¢ € I"we have exe; = e, € L. We need to assume

P P5k; let these homomorphisms be Pelx, €) =e,, Py €) = e,. Since J,
are finite, ¢; € J, . It follows that P.J o CJ,. Hence U J, is a left ideal of P.

eeL
We shall now introduce convenient definitions for the principal ideals

and F-classes.

Definition 2. The set (z, e)r = Pz, e) U {(z, e)} is said to be the principal
left ideal of P, generated by (, e).

Similarly we define the principal right ideal of P.

The set of all elements which generate the same principal ideal (left (x, e)z,
right (, e)z) is called F-class (left Fir(z, e), right F(z, e)).

‘Hereafter analogous results as given for left ideals hold for right ideals.

Theorem 3. (z, ¢), = U (P.g(x, €) U {(z, e)}), where ¢, € (e),, of I.

Proof. According to Theorem 1 (z,e)y NP, =J, for ¢+~ e, where J,
is a left ideal of P,. Since J, C{(x, &)y, for (y,e;) €J, we have (y,e) =
= (2, &) (z, ¢). Hence according to Lemma 1, (y, &) = ¢z, )¢l (x, e);
this means that (y, &) € P g5 (x, e). It follows that (x,e)y NP, = P, ¢ (z, e).
At the same time, @.ooow&zm to Lemma 1, ¢; = ¢e, hence ¢ie = ¢;. This shows
that ¢; € (), of I'. Since e €(e), of I, ee=¢, thus P, (x, €) = (¢2,P,)
(Ph.(x, €)) = P, @eelx, €). However, since P,(z,e) C (z, e), P, ot (2, e) C
Clz,e),. This means that Pos (@, e)C(z,e),NP,. By~ the result
above, this gives (x, e NP, = P, gf(x. ), proving the assertion.
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Definition 3. Fy(z, e;) < Fy(x, e) iff (z,ea) <= (z, e). (Similarly  for
@m-&@%mm.v i
By analogy we shall introduce the relation < for F,- and Fp-classes of I

Remark. The set of Fr(Fg)-classes is partially ordered with respect
to the relation <. ,

Lemma 2. The ideal (z, )L is the union of all Fi(y, e;) for which Frly, ) <
= Fy(z, e) is true.

Proof. Let (y, @) € (z, ). Then (¥, &) C(, e), therefore Fiy, e) C
C (2, e), where Fy(y, &) = Fi(z, e). Clearly for Fr(j, &) with Fy(j, ;) <
= Fi(z, ¢) we have Frlj, e) C (z, e)y.

In the following, the assertions are valid if we replace (z,e);, by (z, €)r
and Fg(z, ¢) by Fi(z, e).

Theorem 4. a) Let (e2)e = (&) in I'. Then Jor eack (x, e)) there exists (z, es)
such that Fr(z, es) < Fr(z, e1). b) Let Fr(z, e2) < Fyw, e1). Then (eg), = (e1)r.

Proof. a) We suppose (ez)r <= (e;), then we have e; = eze; for some eg;
thus e.e; = ¢,. According to Lemma 1, for (z, es) we have (2, €2) {z, &1) =
= (%, e2) € (z, e1);,, whence (z, e2), =< (x, e1)r. By Definition 3 this means
that Fi(z, e) < Fi(z, e;). b) According to Definition 3 and Lemma 1, epe; — es,
therefore (e.), < (e1)r. :

Theorem 5. (e2)r = (er)s, tff (ere2)y, = (e2e1)r = (e2)p.

Proof. For (), = (e1)r we have eye; — ez, therefore e1ese; = e1e5. Hence
(er1€2)r = (eze1);. Since I' is a semigroup of idempotents, we have from the
foregoing ese;ep — €261€2¢1 == €201 = €3, thus (ege;), = (e1e2)r,. This, together
with (e1e2)r, < (eey)y proves that (ejep)y = (eze1)r. = (eg)r.

The second part of the Proof is evident.

As a consequence we have proved the following

Theorem 6. Fir(e)-classes in I (es € M CT) form a chain under the relation <
iff there exists in P a chain of Fr-classes with at least one Fy-class from each S

Theorem 7. Let (e)r = (e2) in I'. Then Jor each (21, e;) there exists a de-
sceding chain of Fr-classes ... Fr(zs, e) = Fi(ye, e) = Fi(x, ¢) < Fi(,
es) = Fr(x1, e1) in which tke classes of P, and P, appear alternately. In case P,
and P, are the union of Fy-classes, this chain is infinite. In case the chain is
Jindte, for some (x, 1), (y, es) the relation Fr(z, e1) = Fp(y, €2) 1s true.
~ Proof. Since (eV)r = (e2)z, ereq — @, €1 = ez. In a similar manner as in
the proof of Thecrem 4, for (y,es) we obtain (4, €2) (1, e1) = (31, e) e
€ (21, e1)r.. Hence Frlyr, e) < Fr(x1,e1) and further (1, €1) (91, €.) =
= A.&m.v mHV & Q\T @thu This mgﬁ_mam .N«JBA&? @Hv M .N«h@\r mmV M .NNBA&.T @Hv. Con-
tinuing in this way, we obtain further elements of the chain. The last statement
of the theorem is evident from Theorems 4 and 5. .
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Theorem 8. Lt (e1) = (e2)r in I'. Then P, and P, are isomorphic semi-
groups.

Proof. By (e1) = (e2)r, we have €162 = €1, ese1 = €3. On the other hand,
by Lemma 1 there exist homomorphisms @ and: @2 and so for (z, &1) we
have (z, ¢;) = Pz, 1) = Per?5(z, e1). Hence Per is a homomorphism of P,
onto P, . In the same Way we can prove that o is a homomorphism of P,
onto P, . It follows that P, and P, are isomorphic semigroups.

Theorem 9. et Fr(z, es) N P, £ 0. Then (e2)r = (e1),.

Proof. By hypothesis, for (z, e1) € Fi(z, €) and for some (%, e3) we have
(z, e2) = (x, e3) (z, e1). Similarly we obtain (®, e1) = (z, e4) (z, e2) for some
(z, es). Hence, according to Lemma 1, eser = e5, e4ep — €1, that is (ey), =
= Amwvhn Amwvh = Aamvhu thus Amavh = Aath.

Theorem 10. OoF (z, e3) C Fro8(z, e5).

Proof. Let (v, e2) € Fi(z, e5), that is (¥, e2)r = (x, e)r. We wish to show
that (@2(y, @)l = (p2(x, e2)). By hypothesis, for some (%, &) we have
(@, &2) == (2, ) (y, e2), where eyep — ¢z Then ¢i(z, eg) = g2 g2z (s €) Pe,(Y, e2)] =
= Palm adafily, @), whenco gfia, &) € (g8, e)g, T (95(z, €2))zC
Cley, e2)). In a similar manner we can  prove (gf(y, ep)), C
C(¢li@ e))r and so (7, e = (92, e))r.  Hence Pl (z, e0) C
CFLe(x, ea).

Theorem 11. Let (e1)r = (ea).. Then Pl (2, e3) = F (g5, ep)).

Proof. After considering Theorem 10 there remains to be shown that:
if (y, e;) € F 92z, ;) then y, &1) = ¢2(z, e2), where (z, e2) € Fi(z, ). Using
the proof of Theorem 10 we can see that (z, ey) — (paly, e1))r = (Pegl(z, ) =
= A&.u @mvh. .

Remark. Clearly, if (e1)r = (e2), the ideal (x, e1)r s isomorphic to
(¢, €1))z. (which follows from Theorem 8 as well).

Theorem 12, a) Let the Fi(e)-class in I consist of & unique element. Then P,
18 the union of Fi-classes in P. b) Let I' be a commutative semigroup. Then P,
are the union of Fy, classes in P :

Proof. a) Let Frlz, e) N P 5 @; then, according to Theorem 9, (e)r =
= (e:) — a contradiction. b) Suppose that (e1)r = (e2)z in I'; hence €1 = e3.
Then a) implies b). .

,.E.moSE 13. Let Fr(z, es) N P, #0; then Frz, ) N P =g Jor all
A.R. mmv.

Proof. Let (y, e1) € F(z, ez). Then for some (2, e3) we have (x, eg) =
(2, €3) (y, e1) and according to Lemma 1, ese1 = e5, that is €1 = e3. On the

307




other hand, let (o, e1) € Fplz, ep). Similarly we can show that €] = ¢,
Finally we have ¢; — ea (clearly, we consider only e;  ¢p).

Theorem 14. Iet Fr(z, e) < Fr(y, e1) for e; + es. Then either Fp(z, ) <
= Frly, e)), or Fr(z, e3), Fr(y, e1) are incomparable.

Proof. By hypothesis, for some (x, e3) we get (, €s) = (z, e3) (y, e1), then
€s€1 = ez, that is ege; = ¢y, Lot Frly, e1) = Fi(z, es). Similarly we obtain
€21 = e;. Finally we have ¢; = ¢y — g contradiction.

Theorem 15. h&.aﬁvn = (e2)r, €1 == es. Then Fr(x, er), Fp(x, e5) are in-
comparable.

Proof. Theorem 4 for Fg classes may now be applied to show that Fr(z, e) <

= Fg(z, e1) implies (e2)r <= (e1)r, which is to say that eies = ¢,. Since (e1)r =
= (e2)L, €13 = ¢;. Finally we have e; — €2 — a contradiction. In a similar
manner it can be shown that Fr(z, e1) < Fp(z, €2) does not hold.

Remark. Theorem 15 (according to Lemma 2) may be interpreted as
follows: if (e1)r = (ea) (e1 e2) then (z, e1)z N Pey £ ¢ for all (z, e1).

.Hrmoumsum.H& G.,mvwm%s&assc&@ﬁ of P. Then a left ideal L has the 3..%\&
identity (i, ey iff I — (¢, e)r. -

Proof. Let L be a left ideal in P and (i, e) its right identity, which means
(s e) (2, €) = (x, e) for (z,e) e L, whence I, C (i, €)r. Since (3, e)e L (is its
right identity), (i,e), C L. According to the foregoing result {i,e) = L.

Theorem 17. Let (t, €) be an idempotent. Then (z, €) (1, ¢) = (z, ) holds Sfor
(z, e) € Fy(i, e).

Proof. The statement is clear, since (z,€) = (y, €) (i, e) (because (x, e), =
== (1, €)).

Remark. For (z, €) € Fp(i, €) we have (%, €) = (i, ¢) (x, ¢).

Theorem 18. Lt P,, P, have the wnique idempotents (%, e1), (7, e2). Let
(=, e1)r = (z, e2).. Then (¢ el = (i, &)y

Proof. By hypothesis and Theorem 9 we have (e1)r = (ea);.. Using Theorem
11 we can prove our mmwmﬁﬁo:.

Theorem 19. Lot P,, P, have the unigue idempotents (i, e1), (i, e3). Then
G, e1)e = (i, e2)r, iff (e1)r = (e2)r.

Proof. Let (3, ), — (%, e2)r. Using Theorem 9 we can see that (e), =
= (e2)r. Let (e1) = (e2)r; from Theorem 11 it follows (3, e;), = (2, e2)r.

Theorem 20. Let P, have o unique idempotent (3, e). Let Fy(i,e) = Fp(i, e).
Then F(1, €) is the maximal subgroup of P.
Proof. According to Theorem 17 (3, €} is an identity in Fp(s, e). Moreover

A.\QV )y = (x, e, = Asu mvb :Bwu_uwm ((=, e) AQ* e = 2“; mv Am\n @Ch = Am\v 35.,
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Hence Fy(i, e) is a. semigroup. We shall prove now that (z,e), — (¢, )
implies the existence of (2, €) with (z, e) (x, €) = (i, e). Because (z, e)p =
= (4, e)g, for some (v, e) we have (z, €) = (i, €) (v, e), whence (2,€) (z, e) =
= (2, €) (i, ¢) (v, €), therefore (6 e)r C ((2, €) (3, €))p. Similarly we can prove
(( €) (2, e))r C (4, €)g; thus (2, e)r = ((z, e) (3, €))r. Hence (z, e) (3, e) e Fy(s, e) =
= F1(i, ¢). Thus [(2, €) (¢, e)](=, €) = (z, e)[(s, ¢) (z,€)] = (2,e) (x,e) = (2, €)
as required. This shows that Fi(i, €) is a group.

It is evident that the elements of the group generate the same principal
left (right) ideal. Therefore Fi(i, €) is a maximal subgroup of P,

We derive next (Theorem 21—25) some of the properties of semigroups
with identity (hypogroup).

Theorem 21. Let the semigroup P be the product of semigroups P, over the
semigroup I'. In this case P will be a hypogroup iff I' and Py are kypogroups
(where I' is a semigroup of idempotents). Moreover, if e is the identity in I and
(J; €) the identity in P,, then (7, €) #s the identity in P. :

Proof. Let P be the product of hypogroups over the hypogroup of idem-
potents I, Since I' is isomorphic to the semigroup of identity elements in P,

that P is a hypogroap.

Let P be the hypogroup which is the product of the semigroups P, over
the semigroup I'. Let {4, €) be the identity in P. Since (4, €) is an idempotent,
according to Lemma 1, ¢ e I" s an idempotent as well. Tn P we have (z, ¢)
(Js ) = (4. e) (, &) = (, &), this means (by Lemma 1) ee — e = ¢ and
80 e is an identity in I". Hence I Is'a hypogroup. Moreover; according to
Lemma 1, it follows that o (j, €) is an idempotent in P, , therefore ¢; is
an jdempotent in I'. As for each e; € I' we have ee; — e, I'is a hypogroup
of idempotents. But since the image of identity is an identity, ¢(j, €) is the
identity in P, . This means that P, isa hypogroup. This completes the proof.

Theorem 22. T%e necessary and sufficient condition, Jor hypogroup P to be
the product of semigroups over the semigroup I' is that there exist on P a con-
gruence, the classes of ‘which are hypogroups, while their tdentity elements Jorm
a subsemigroup of P,

Proof. We denote the classes of the congruence by 8, (1 =1, 2, g, €)
is the identity in 8,,. It follows that (, e1) (y, €s) € 8,.,- We shall show that
the mapping (z, ¢;) - (x, 1) (4, e2) is a homomorphism of S, into 8,, and
(7, €2) > (j, 1) (4, e2) is a homomorphism of 8,, into 8, . The following holds:
(1, e1) (s @2) (22, 1) (j, ) = ((21, 1) (. 1) (G @) (22, 1) (j, e2) = (s, e)
(> &) (G, &) (@2, 01) (o €2) = (21, 01) (wp, @) (J, e2) (because (2, e1) (4, en) e
€8,,,, hence ((4,e1) (4, e)) ((z2, e1) (4, e2)) = (s, e1) (j, e2) as required. Simi-
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larly it can be shown that (y, eg) — (4 e1) (y, e2) is a homomorphism of S,
into S,,,. We denote these homomorphisms by P1o,¢%. Clearly P3°P1s = gl.
Using such homomorphisms we can construct the product of the semigroups
8, over the semigroup I, where I'is a semigroup isomorphic to the semigroup
of identity elements in P; in this Way we obtain exactly P.

The necessary condition is evident by considering that the image of iden-
tity is identity.

The following holds for hypogroups of Theorem 21 (hereafter the identity
in P, is denoted by (3, e)).

Lemma, 3. For each (x, e) the relation Fi(z, ¢) < Fr(], e) is true.

Theorem 23. Lot (J: &)1  (J, e5)y. If Fr(z,e1) < Frly, es) for some (=, e1),
(¥ e2), then: a) Fr(j, e1) = Fi(j, e2), b) Frfz, ) < Fy(j, e1) s not true Jor
any (z, es).

Proof. a) By hypothesis, there exists such an element (z, es) that (,e) =
= (z, &3) (y, e2) and so (x, e1) = (2, es) (y, e2) (j, ez) = (z, 1) (4, eg). According
to Lemma 1 (4, e1) (4, e2) = (7, e1) which is to say that (4,e), = (7, e2)z.
b) Let Fi(z, e) = Fi(j, e1) for some (=, e3). According to a), Fi(j,e) <
= Fr(j, e1). On the other hand, by hypothesis and by a) we have F( Jre) <
= Fu(j, e2); thus we obtain (J, en)r. = (4, e2)r, — a contradiction.

Theorem 24. For Fr(j, e) and Fr(j, e) the Jollowing are trye: a) Fi(j,e) and
Fr(j, ) are semigroups. b) For each (21, €) € Fi(j, €) there exists (82, €) € F(, e)
such that (sg, €) (21, e) = (j, e). Similarly Jor each (a,, e) € Fr(j, e)
there exists (s;; €) €Fr(j, e) such that (w2, €) (51, €) = (4, €). ¢) Each element
(s, e) €eFr(j,e) U Fr(j,e) can be written n the form (s, e) = (22, €) (21, e)
where (21, e) €FL(j, ), (22, e) € Fg(j, e) for (21, €) or (22, €) given, before.

Proof. a) Let (J: &)= (j, er)p = (%, €)z = (z, e1);,. Then ((z, ) (%, e1))y, =
= ((J; &1) (z, &1)), = (z, e1)y,. Similarly ((z, a) (z, e)), = (x, e)r. b) (21, e), =
= (4, ¢)r implies (s, &) (x1, €) = (4, ) for some (s, €). >oo©u&zm to Lemma, 1,
ee = ¢. We denote @5(8, €) = (s, e). Evidently (s, €) € (j, e)r. But (j, e) =
= (82, €) (1, ¢), therefore {J: €) € (s2, €)z, hence (J: ©)r = (s2, €)n, thus (82, €) €
€ Fr(j, €). The second assertion can be pProved in the same way. c) Let (s, e) e
€FL(j,e) and let (22, €) € Fg(j, e). Then according to b) for some (u1, e) e
€F1(j,¢) we have (4 €) = (22, €) (uy, e), hence (s1, e) = (22, €) (ug, ) (s, e),
whence according to a) (ui,€) (s, €) = (2, €) e Fr(j,e), thus (s1,¢€) =
= (22, €) (21, e). Similarly the second part of the assertion can be proved,

Theorem 25. The left ideal I, has the identity (5, ¢) iff I, = U, e and (e),
has an identity.

Proof. Let [ = (J: €)z. Since ee;, — ex (because e is the mmmwan% in (e),
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@old, €) = (4, ex), hence (g, &) (I, ex) = (1, ex) for (1, ex) € L. Thus (4, e) is the
identity in L.

Let L possess the identity (j, e). Clearly, the semigroup of elements | Jre)el
is the left ideal in the subsemigroup of all identity elements of P, and is iso-
morphic to the subsemigroup of I, which is, therefore, a left ideal in I'. This
ideal evidently possesses the identity e. It is therefore (e). According to
Theorem 16, I, — {(j, e)r. ;

Remark. From the hypothesis of the theorem stating that (e);, has an
identity, it follows that Fr(j, ey P, = (jfor ¢; £ .

Finally, we mention some examples of semigroups which are the product
of semigroups over a semigroup, the properties of which have already been
studied.

From [1] it follows:

The semigroup § is said to admit relative inverses if to each @ .S there
exists an element ¢ € § such that qe — €2 =« and an element o’ € § such
that a’'a = aa’ = e. Then following holds:

Theorem 26. Each semigroup admitting relative inverses in which every pair
of idempotents commaute is a product of groups over g semigroup of idempotents.
From [2] and [3] we have: ’

Theorem 27. Each Jinite simple semigroup S without zero, having at least

group without zero.

From [4] can be deduced:

In a periodic semigroup let the set of elements z with 2% = e (for some n
and for the idempotent e) be called K-class belonging to e.

Theorem 28. The product of - commutative periodic semigroups P, over the
commutative semigroup of idempotents (semilattice) is a commutative periodic
semigroup in which the K-classes are exactly P,. Moreover each commutative
periodic semigroup, the K -classes of which are groups, is the product of commu-
tative periodic groups over a semilattice.

We shall say that the periodic semigroup § is partially commutative if for
each e € § and each z e 8, ze = ex is true.

From [5] it follows:

Theorem 29. The product of partially commudative periodic semigroups having
a unique idempotent over g commutative semigroup of idempotents {(semilattice)
18 a partially commutative semigroup, the K-classes of which are exactly P,
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Theorem 30. (according to [6]). Let each principal loft ideal i, the semigroup pr
contain an identity. Then P s the product of groups over the commutatipe semi-
group of idempotents (semilattice) uf for each e e I, (s € = (4, e)r where (7, e)
is the identity in P,.
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noayrpymna Ps. Hycrs mamo MHOM<ecTBO & roMoMOpgusMoB %% (@, Ber), e @5 romo-
MopdHOe 0Tobpaenue Py B Py, Iycrs mpu arom %5 €6 Torma m Tomnko TOrma, Korma.
« = B nuu Cymectyer y € I' mun KOTOPOTro oy = f puy ve = B. Iycrs MEOmMecTno ®
YROBIAETBOPACT ycmopumam: 1, Ona eer ¥ fABAAETCH TOMIECTBEHHEIM oToOparkenmem P,
Ha Py. 2. Ecmumun o, B, y e I Cymectsyior B G romoMopdusmer 95, 2, ¢ Torma ooy = @5
OGosHaunm smements MHO3kecTBa P, yepes (z, ). ITycrs m.rlqmowoax,ao:o.zmoimoewammom
o0bemuHerne MHOMecTn Pylx € I). Onpegennm 8 P YMHOMeH1e CrenyomumM o6pasom:
(z, a)(z, f) = Prsl, &ﬁmlﬁ B). Muomecrao P ¢ 9THM YMHOMKeHMeM ABmAercH Ionyrpymn-
noit. Hasosem ee npousBeneHnem monyrpynn Py nag I,

B nacrosmedt crarpe H3Y4alTCA HerOTOpHE CholicTaa 3THX OpPOU3BeReHMIL,
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