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ON POWERS OF NON-NEGATIVE MATRICES

STEFAN SCHWARZ, Bratislava

Let 4 bean X n matrix with wos-bomma?m. entries. One of the main problems
in mg&%Em such matrices is to study the distribution of zeros and ,non-
-zeros‘‘ in the sequence

1) , 4, 42, 43,

In the paper [2] I have shown that there is a simple semigroup treatment
of this problem which leads to a series of resultswithout any mention of such
notions as characteristic values, characteristic vectors, etc. v

This semigroup treatment leads to some pertinent questions which will
be partly solved in this paper. .

For convenience of the reader I briefly recall the necessary notions intro-
duced in [2].

Let N ={1,2,.. 3 Consider the set of “n X n matrix-units”, i.e. the
set S of symbols ?s |4, e N} ﬁommewﬁ. S&r a zero 0 adjoined: 8§ = {e; |1,j €
e N} v {0}.

Define in § a multiplication by

_ _Oforj #£m,
€ijlml = Aa: mou..w. =m,

the zero 0 having the usual properties of a multiplicative zero. The set S = S,
with this multiplication is a 0-simple semigroup. It contains exactly n non-zero
idempotents, namely the elements ej1, g2, ..., eny.

Let 4 = (ay) be a non-negative #n X n matrix. By the support of 4 we shall
mean the subset of S containing 0 and all those mHoEmbnm ey € 8 for which
Ay > 0. .

The support of 4 will be denoted by C 4- For typographical reasons we shall
write occasionally C4 = C(4).

For any two n X n non-negative matrices we clearly have Cyyp = C4 U Cp.

Consider further the set @ = &, of all subsets of § = S, and define a multi-
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plication in S as the multiplication of complexes in §, i.e. if ¢, 0" € G, then
C'C" = {cicofer e ', ez € C"}. Then G is again a finite semigroup containing
exactly 2" different elements.(1)

If A, B are two non-negative matrices it is easy to see that Cug = 04 . Cs.
In particular, the supports of the elements of the sequence (1) are given
by the sequence

va QB.QM»QWV.

Though (1) may contain an infinity of different elements, the sequence (2)
contains only a finite number of different elements. The correspondence
A~ C4 is a homomorphic mapping of the semigroup of all non-mnegative
matrices onto the semigroup &. [If we consider the union of sets as the second
binary operation in &, we have even a homomorphic mapping of the semiring
of all non-negative n X = matrices onto the semiring &.]

The following facts easily follow from the elements of the theory of finite
semigroups.

Let 4 be a fixed n X n matrix. Let k be the least integer such that C% = O,
for some ! > k. Let further | — k + d (d = 1) be the least integer satisfying
this relation. Then the sequence (2) is of the form ..

Cus ooy O O o, OFFF1, | O, o, CBFOE |

Denote by S 4 the subsemigroup of & generated by C4. Then & 4 has exactly
k 4 d — 1 different elements and we have

va @k = ﬁQh 3 ceey QWI.M» Qwu £ QHM.Talww.
For any « = k and every # = 0 we clearly have
(4 05 = O3,

It is well known that G, = {C%, ..., C5r 1} is a cyclic group of order d
(subgroup of S,4). The unit element of the group G, is O% with a suitably
chosen ¢ satisfying k <o <k 4 d — 1. Let 7 be the uniquely determined
integer such that k <td"<k-+ d — 1. Then ¢ = td. To show this it is
sufficient to show that C*¢ is an idempotent. In fact we have (by (4) with
«=1d, f = 1) CF = O+ = C2,

In the following we shall consequently write ¢ = 7d, so that C% is the
(unique) idempotent € S 4. Clearly, we also have G, = 08 0% .. ggkt=T),

Note explicitly that to every non-negative matrix 4 we have associated
three integers & = k(4), ¢ = o(4) ‘and d = d(4) satisfying k <+d = p <

(') & may be considered — of course — also as the Boolean algebra of n x n square
matrices with elements 0 and 1 and the usual binary operations.
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< o + d — 1, which depend only on the distribution of the zeros and non-
-zeros in A. . A

For further purposes we mention also the following facts proved in [2].
If 4 is any » X n non-negative matrix, then

cHlCC,uCiu...uly.

Hence the set O, U Q.w U...U 0% is always a subsemigroup of m = Su.
A non-negative matrix A4 is ocalled reducible if there is a permutation mat-

rix P such that P-14AP is of the form

. 0
P1AP = AE v

B 4,

Otherwise it is called irreducible. An n X » non-negative matrix 4 is irre-

ducible if and only if
C,UCiu..uCly=_8,.

Tt should be mentioned in advance that in this paper the emphasis is rather
ducible case.

oﬁ%%%.mm@n now the semigroup G4 as given in (3). The o_o:a.sem of &4 are
subsets of S. At least one of the elements € &4 (namely (%) is itself a mﬂ.:o-
semigroup of S. The first problem treated 5 this paper concerns the mozo“ﬂ:m
question. Under what conditions concerning A and s may it vgwwm_w M:
the set % is a subsemigroup of S. The second wnoEwB is to find a “‘goo .
characterization of the number d = card G4. It will turn out that bot

questions are intimately connected.

Lemma 1. Let A be any n X n non-negative matrix. Suppose that C% is a sub-
semigroup of 8 = Sy. Then

a) 8 C O%; . . . )

UW Qw 85M§m all idempotents € 8 contained in the union C4 U Ciu...uly. |

Proof. a) The sequence
. % O3 %

; . . that
contains a unique idempotent C4. Hence there is an integer v such tha

- - h Nm - u . -
v — (% . Since C% is a semigroup, we have C} D €'/, which B@:OM

0,002 DCED .00 =CY.

mv Let B4 = {eqs/« Tunning through a subset of N} be the m@o;& all EEMQ.O
idempotents € contained in C, WC5 U ... 0 (. If enneCy (1 =k =),
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then esy € G for any integer ¢ = 1. Since some power of C* is 04, we have
exx € C%, hence E, ceycoy.

Theorem 1. The group G4 = {C%, ..., C5r41} contains exactly one element
which is itself a subsemigroup of § . .

Remark. This is — of course — the idempotent C9 .

Proof. Suppose that C%, k < s <k +d—lisa semigroup. By Lemma 1
we have C4 C C% . Multiplying by €%, we have C% - 04 CO% CC4. But since (%
is the unit element € ®4, C4 . C% = C%. Now C, CC% C O} implies 0% =
= (%, i.e. 0% is an idempotent contained in 6 4. Hence €% = (%, q.e.d.

Remark. If & > 1, the set {C,, C%, ..., C%'} may contain subsemigroups
of 8. Let f.i. 4 be a non-negative 3 X 3 matrix with the support (in an obvious
notation(?))

5

000
Cs=|[100
110
Then
000
Ci=1000
100

and C§ = {0}. Hence all elements C,,, 2, C% are subsemigroups of ;.

Theorem 2. Let A be a non-negative n X n matriz for which C, U CZu...u
U O contains all non-zero idempotents € 8, i.e. the set B4 — {en, e, ..., enn}.
Then S 4 contains exactly one element that is itself a subsemigroup of 8.

Proof. Letbel <s <k -+d — land C a subsemigroup of 8. By Lemma. 1
we have {e11, ..., enn} CC% . If 4 is any subset of § we always have Afeu,
enn} = A. In particular (in our case) we have

M = hmmﬂu cees maavmﬁ_w.

The “‘inequalities’ €% C 0% and O% C 0% (describing the semigroup property
of 0%) imply C% = C%. Since there is a unique idempotent € S, we have
5 =09, q.e.d.
If § is irreducible, then C, U CL V... U0 =8, so that the suppositions
of Theorem 2 are satisfied and we obtain:

“eey

Corollary 1. If A is irreducible, then C% is the unique element c S, which
us itself a subsemigroup of S.

(*) We shall occasionally use this obvious notation by puting 1 on those places (s, k)
or which e € 4. F.i. in our example the “Boolean matrices” C4, 0%, 0% denote Oy =
= {0, ez, en, sz}, C% = {0, es1}, Cy = (0}
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Corollary 2. If A is any n X n non-negalive malriz and €% i3 ¢ semigroup
containing {ei1, ..., ean}, then C% = C%.

Proof. By supposition 0% = C%{e1, ..., enn} CC¥. On ?o other hand
0% C €%, hence (% = O%; therefore C;, = 2 @.@.m.m . .

Remark. In Corollary 2 the supposition that €5 is a semigroup cannot
be omitted. Let fi. 4 be a 3 x 3 matrix with

001
Ci= {100}
110
Then .
101
c3=|110].
111
contains {en, e, e}, but C? is not the idempotent € S4. (The idempotent
e A is QW V

The next two Lemmas will enable us to locate, so to say, the semigroups
in the sequence (2) and to find at the same time a new characterization of the

number d.

Lemma 2. Let s be an integer such that C% is a subsemigroup of S.
We then have: ,

a) Oy = C4";

b) d|s;

c) C4 C C**% for any infeger t = 0.

‘Proof. a) We have C%4* €@, . Further C%* is a subsemigroup of § since
ooy = 0% (% = €% . CHCCY, U8 =197,
Hence by Theorem 1 C4H¢ = (4. . .

b) Suppose that d + s and write s = ad 4 §, where « = 0 is an Eeommn
and 0 < B < d. Since for any integer « we have 04*! = (% the relation

¢ == (C%"¢ implies

o = OGHedth — OLFICh = CY . O = O%F.

The relation % = C%"# contradicts to the fact that the group Ga = {C%,
o4, ..., 0% %1} is of order d. h

mov By H@M«HB@ 1, we have €4 C C%, hence 04 C (5% and since C% =
= (%, we obtain C4 C 0%, This proves our Lemma.

. 1 wt2 s+d—1
Lemma 3. If C% is a semigroup, then none of the sets O3, C52, ..., O

can:be a semigroup.
Proof. If 0%*, 1 <4 <d — 1, were a semigroup, then Lemma 3b) would

imply that d | s and d | s + 1, which is impossible.
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Let s, be the least integar s such that C7 is a semigroup. Then s, <

and
we may arrange the set of powers in the following way: ¢ e

(5) O OF 5 wns BF L, cu, Oyt .., OyFat
wag. Qw+&+ wv ey Qw+mm|~.
Oyt®, oot Omerse—1
Qﬂu Qw».fan iy QM.T &lu.

Since d | ¢ and d | s, there is necessarily an integer f such that @ =28, + td
We get exactly ¢ + 1 rows. The last of them contains at least one mm.mspmum
€® 4 which does not occur in the foregoing row. (This means: Tt may happen
that to obtain all different elements €G4 it is not necessary to acuMMoH.
the whole last row, but certainly at least the first elemert contained in it.)

The idempotent C4 is necessarily contained in the column {C%, C%te v
and (by Lemma 2¢) C¢ is a subset of each element of this oo_zEF% .

Also (by Lemma 2b) all elements € &, which are themselves subsemigrounps
of § are located in the column {C%, O, 0%, .., %). Hence g@@monw-
groups contained in the sequence (2) are some of the Hooéwwm
Q.ru O;.l.m. L 8o+ (t—1)d
and all the following o i

@h = QWMJI& —_ QMAII.HK — QAMA_.Q.TS& s

Now since d | s,, the number d is the e mon divi
) reatest com e
£i g n divisor of the sequence

§ u% I_I&u.m. I_lw&«...
We have proved: o °

HE.ES.E 3. The 3@.50% d=card G4 is the greatest common divisor of all
such integers s for which Cl is a semigroup (. subsemigroup of S).

We make some supplementary remarks to the “tableau’’ (5).

ng.mww 1. None of the sets €%, ..., 0% is contained as a proper
subset in another, i.e. C4* C Cgte implies C4™* = 0%F°, g

Proof. We first prove that C*C %%, 0 <u<d—1, implies C4 = 0%+,
Note that by Lemma 2'a C%4 = %™ for any integer 1 = 0. The relation
0% C O implies B

0 COY“C O™ C... C orem — .
Hence €% = C%"*. Suppose now

6 u v
A v QM,T AHQM+

for m%Eo % v = 0. Since C4* € B 4, there is a €% such that oot O =
=0C%. Here w +u' =0 (mod d) Multiplying (6) by C%* we have e C
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C C%*+¥, hence 04 = C%"**, so that v 4+ ' = 0 (mod d). Therefore u — v =0
(mod d) and C4* = 0%, q.ed.

Remark 2. The statement just proved implies that none of the elements
0%, C%*1, ..., %% can be contained (as a proper subset) in an another.
For O CO* 0<4i I<d—1, i+ multiplied by C§ would imply
Oy et C Oyt je, 04 C 04, hence CO4' = C4", which is not true.
An analogous statement holds for the remaining rows.

Remark 3. In [2] we have proved that for an irreducible matrix the inter-
section T, = 04 N CY 1 N ...NCY % 1is {0}. [Even the intersection of any
two of these sets is {0}.] This is not necessarily true in the case of a reducible
matrix. Consider fi. a 3x 3 matrix 4 with Cy4 = {e1s, a1, es3, 0}. Then €% =
= A@Hr €22, €33, Qw and @4 = AQKT QMW Hero Ty =C4 N QM = Amumu Qw

But it is easy to show that T4 is always a subsemigroup of S. For let be
@ €Ta, beTs. Then aeCq* for any k=0, 1, ..., d — 1 and b e C¢" for

any 1 =0, 1, ..., d — 1. Hence ab e C4"**!. If k, I run through a residue
i—1

system (mod d) so does k - 1 so that ab € N C4™; hence ab € T4, q.e.d.
. m=0

Remark 4. For an irreducible matrix 4 we have s, = ¢ and we always
have C% C C%. Again this is not necessarily true for a reducible matrix.
This is shown on the following example. Let 4 -be a matrix with

0000
Ci=]1100
1000
1111

Here d — 1 and G4 is the one-point group G4 = {C%}, where

0000
CZ=]1100
0000
1111

We have s, = 2 and C, C C5 does not hold.

Example. We conclude this section with a simple example of a matrix
with card G4 > 1 and s, < . Let 4 be a matrix with

01 |

10/ O
C4= 0000
1000
0 1100
| 1110
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Then
10}
! 01
o1 0 10; O
Gie 0000 =1 10000
cmwooo. g l0000 [,
fo 0000
(BT [ 1000 |
01]
QM” Qw” Howo

Here ©4 has 5 different elements, G 4=1{C4, C3}, d=2, s, =2, while
2 H — ¢ T 4 '

g=4.
II.

H.rm H.mm&.n of Theorem 2 may be formulated in a somewhat other wa
by introducing the notion of the normal form of a non-negative matrix N_&%
. Let M be & non-negative matrix (of order ). It is well known that &roum.
1S a permutation matrix P (of order n) such that PMP-1 — A is of the form

. An, 0, ..., 0
(7) A=A, A, ..., 0
k&,nhu kﬁﬂwu seey kA\*

Smrmuo Ay VC =1 =r) are irreducible matricos (including the case that some
of the 4, s may be zero matrices of order 1).
Consider the sequences

(8) s O3, O5, .
9) Cy. €5, 885 ,

The m@EmmHOGﬁvw @m n i
and S are cl y i i migr
1 is C - e M clearl HMOEOHHVEQ. If Qﬁ& 13 a se group,

28 8 13
0¥ = CpCyCpa . CpCCps = WQWMQ? CCpCyCp. = %

wsm oo.ziﬂ.me. In particular, if €%, is the idempotent € Sy, then C,C¢,C

My the idempotent €4 e @m.. so that o(4) = o(M). Hence instead of mﬂcmmw&m
e sequence (8) we may restrict ourselves to the study of the sequence (9
We mwu& use the following notations. d; will denote the order on the aosv.

Gy, o a.S: denote the loast integer for which 0%, is an idempotent mm S g
If ¢ is the idempotent € G 4, then 4, is sm.ommmpmz% the idempotent e @M...
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If o = o(4) has the meaning introduced from the beginning (i.e. the smallest
integer for which €4 is an idempotent € S4), then ¢ is necessarily of the form

0 = 01 + x1di = g2 + wod2 = ... = ¢r + %,dr, with suitably chosen non-nega-
tive integers xi, %2, ..., ¥r. Since g = rdy, we have ¢ = di(ty + 1), © =
—1, 9, ..., r. Denote d* =[d;, da, ..., d¢] the least common multiple of the

integers dy, ..., dr. The relation d; | ¢ implies d* | o. We have proved: there is
an integer 7* such that ¢(4) = v*d*.

In what follows it is often of decisive importance whether in the normal
form (7) there is among the Ay’ s a zero matrix (of order 1) or not. If none

of the Ay’ s is a zero matrix, then
cy =0y Co,uCiu...u0y

contains {e11, es2, ..., €nn}. With respect to Theorem 2 we have

Theorem 4. If a matriz A written in the normal form (7) has no zero matrix
in the main diagonal, then C° is the unique semigroup contained in the sequence (9).
The condition mentioned in this Theorem is not necessary. There are classes
of non-negative matrices with zeros in the main diagonal having the same

property. We prove fi.:
Theorem 5. Let ,
A4, 0
&= Am OV.
where A is irreducible and not the zero matrix of order 1. Then C% is a semi-

group if and only if it is the idempotent € Sa.
Proof. Let 4; be a mXm matrix (so that R is a (n — m) X m rectangular

matrix). Denote E = {e11, €z, ..., emm}. The support of

4= (gl o)
is a semigroup if and only if
(10) o CyCOy, C(RA®Y) CO(RAT™).
Now €% is a semigroup if and only if 04 = C% is the idempotent €Sy,
and C%_ contains then E. Hence we have .
, Cr = Cg . {en, a2, ..., mm} C C(RA4]).
Now if ¥ is a semigroup, (10) implies
- C(RATH D ORAT ™) = C(RALC(AT™) D OR)C(4™Y) = C(RASTY).
Hiones C(RASTY) = O(RA®Y). Therefore 04 = C%, g.e.d. |

Theorem 5 may be generalized as follows:
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Theorem 6. Let

A — A; 0
R 45)°
with A1 irreducible and not the zer )
Ly | . 0 matrixz of order 1. If C° 4 3
then C is the idempotent € G 4 if and only if Q,\ =3 0 7Cu s o somigron,
2 A,

Proof. Denote
i = 45 0
R, A3

mmh. - A k&m» 0
R A} + AR, A%

The set €, is a, semigroup if and only if

and R; = R. Then

cx C Cy,» Qwa. ccee,
C(R,43) U O(4iR,) C C(R,).
.mEom .A: wm,mﬁo.mzomzow we conclude me = (%, and the diagonal of C°
18 positive, i.e. if 4; is a m X m matrix, we wwﬁw {ew1, eo emm} C Qw_
) €22, ... emm i

mOSEaQQwvHQEQ .;
The N.m_@Sosm «X 1y oeos emm} C QQWLQTAL,.

C(R,A4%) U 048 3

implies (B.47) U C(43R,) CC(R,) C O(R,43)
O(R,43) U C(43R,) = C(R,) = O(R,A43).

Therefore C(A4%) = C(A42%) if and only if C(4}) = C(4%), q.e.d

II1.

In this last section we shall deal with some

witifeh. s By e 1. special types of matrices for

Let A4 be the matrix of the form ior
7). Th i i
sBort ks b v ool AH ) ” e question arises what can be said
The following Lemma, holds. .

%MEEQ 4. If d* = [d1, ..., dt], then card G, — d*.
; o m:..oom .o». this Lemma, (which has been known to the author for some
ime) is given in the recent paper of I0. . Jl106uw (Ju. I. Ljubid
Lemma 2, p. 344]. e T L
. A s.ow-Smmsa.?w irreducible matrix 4 is called primitive if some power of 4
is HV.Om;:\o. This is the case if and only if d(4) = 1. In this case G, i
-point group, namely the idempotent € S . , e
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If A is reducible of the form (7) then Lemma 4 implies card 4 = 1 if and
onlyifdi=dy=...=dr =1 Hence: .

Theorem 7. If A is of the form (7), then G4 is a one point group if and only
if the matrices Ay are either primitive or zero matrices of order 1. )

Remark. There are some special cases in which we may decide that G4
is & one-point group without reference to the normal form (7).

Assertion 1. If C4 is a semigroup, then card G4 = 1.
Proof. By Lemma 2 d = d(4) divides évery s for which (7, is a semigroup.
Since in our case we may put s = 1, we conclude d = 1. :

Assertion 2. If A is any mnon-negative n X n mairiz and C4 contains
E = {en, ..., eun}, then card G4 = 1. :

Proof. By supposition C4= Ca.ECC4C4=0%. Hence C,C C5 C
C...CC% CC%™. On the other hand we always have cvtco,ulCiu...V
U O, ie. C%F1CC%. Hence €% = O4". This implies that (7 is the idem-
potent € S4 and, moreover, card G4 = 1.

A special class of matrices with d(4) =1 is the class of lower triangular
non-negative matrices, i.e. matrices of the following form: ,

: QHHu Ou Ou sy 0
(11) . A= |ay, a2, 0, ..., 0
anl, An2, Oa3, -5 Onn

where ay; (for © = k) are bob-bomm.aﬁw elements, while all elements above
the main diagonal are zeros.

Theorem 8. For a lower triangular non-negative matriz A of order n the set oy

is the idempotent € S4. . o

Proof. a) We first prove that ¢% C C"*t. Any element o € C7 is the product
of n elements € O 4 of the form a = ¢€;;€;;. - - €yu,- Such a product is certainly
zero if the subscripts do not follow in the following order

(12) < (31, 12}, (82, %3}, ---) (in, tnt1)-

Suppose o 7 0. Then by supposition we have ) = 9g == ... = in = tn41-
The integers 41, iz, ..., iz+1 CaNNot be all different. There is therefore a couple,
say 17, 5+1, such that 4 = 4. The sequence (12) is of the form

(i) o (g1, ) G ) G i00) o (s )
and « may be written as the product ,
a3y o a = iy iy Cigpn ** Cinines
But then we may .write also -
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X=€. ... . €. ...8

Uiy *°° Tl ThYy intnir ?
so that « € C%™L. Hence 7% C O

b) On the other hand if o € 0% and « 7 0, « is of the form (13) and we may
omit €, in « (without changing the value of «) so that

A= iy e €y iy - ©

intn+l*
Hence O C C71. ,

The last relation imiplies Q=+H C C%. Both “inequalities” C% C O%+* C 0"
imply C% = O%! and C% = QH_M.H =...=0% qged. .

Remark 1. The exponent n is sharp since for a matrix with n zeros along
the main diagonal and all elements below the main diagonal equal-to 1 we
have C% ' £ 0, but C% = 0.

Remark 2. Also the exponent # in the relation C% C 0% ! (proved in b)
cannot be in general replaced by a. smaller one. Take f.i. the matrix 4 with

S f/100
Cai=1{110
010

Then C% C %, but it is not true that C% C C,, since 6 C iy ﬂ C% = {en, ea, em,
€31, €32, Qw holds.

Theorem 9. For a lower triangular matriz of the type C: and n = 2 there
is always a number s = n — 1 such that C% is a semigroup.

Proof. In Theorem 8 we have proved QMIH DC% = Cy' = ..., Sinee for
n = 2 we have 2n — 2 = n, we conclude %' D Qw?l:.

We now give a non-trivial generalization of Theorem 8 concerning a larger
class of matrices with d(4) = 1. .

Theorem 10. Let A be a matriz of the form

kﬁuou ey 0

(14) A = Ao, Asa, ..., 0

where Ay is either a positive square matriz or a zero matrix of order 1. Then C4—1
15 the idempotent € S4.

Proof. Denote — for typographical reasons — Q?Ai by Cy.

We first prove that Co;Cryy = 0 for ¢ +# 1. Let n; be the order of 4. Then,
if ¢, €C,, we have ny 4 ... + ng1 < 6o 1+ ... + ng. If ey, €0n,
we have ni -+ ... +3«LA.§M§+ .4 n. If ¢ > 1, then 1, < n1 +
+ .. =M A ... ne1 < 6y, hence o, £ 1,, and epers = 0. If o<,
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thenoy < m + ... 4+ ns = m + ... + nr-1 <74, hence gy # 7, M.MBQ €g,0,81,4,
= 0. Therefore ero product QEQ; can be different from Zero os_% if it is
of the form CysCos (and of course ¢ = ¢ = 1). .

We shall now study the vor@ﬁo:w of nr@ powers of C4 = C Cy.

> i
The set €7, is a union o», products of the form Q{.QE. . Cy,- Such
a product can be non-zero only if the subscripts follow in the order indicated
in the product )

C.:.C;

S: o i?;
Suppose that this product is non-zero. Since 4 =12 = ... = ir+1, there is

necessarily a couple, say 4, 41, such that 4 = ¢;, and each .of the non-zero
summands in the set C’, is of the form

- ' Qs.z“,. * Q@LS st QS.I» s Q«.\.vt .
nge since C2; = C,, (and C,, is not zero) this is the same as
Q?.. Qs.E Qws st& v G

which belongs to the set C7;*. Hence ¢, C O
We next show that 0% C 0%~. Each non-zero summand of C% is of the
form

C.....C.. ..C,

U YY1 dariersr *
The non-increasing sequence of 2r + 1 w.u,mmmmnw
o == 2 = ... = e
contains at wpom& r integers different one from the other. Hence there must
be at least one triple such that 4; = ;43 = ¢42. (For if each of the r numbers

appeared at most twice, the system would contain at most 2r members.)
Hence any non-zero mc.BBmBQ of C%¥ may be written in the form

Oy Oy Oy Cy - C

s-s- . ity s larfars1 &

Now since Qm = Q:f this product is yet contained in QwTH Hence C% C

QNq'u. .

.waﬂ the relation 7 C C7f' implies C¥ ' CCY. This combined with
C¥ C 0¥ 1 gives C% ' = C%, which proves our Theorem. (By the way
the last result proves again that G4 is a one-point group.)

Remark 1. In general the exponent 2r — 1 cannot be replaced by a smaller
one. This is shown on the following example. Let 4 be a matrix with

00 i 1100

11

Ca=|[1100 and - ¢t=|[1100
0011 A 1011
1011 1111
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Here » = 2, 0% is not an idempotent, while C3 is the idempotent € G 4.
WaE@lm 2. This example shows at the same time that it is in general
not true that 0% C C"! as one could expect- by analogy with the proof of
Theorem 8. Ob the. oﬁ&u hand we cannot prove ¢! C (' since, for instance,
for. the Bm&EN 4 dﬁer QA = A% MV we F@ﬁw r=2and 0, D C% = {0}.
“The :aNa evooa@E m:Sm an information oozoonEsm the m@EﬁnOﬂ@m E&E
sequence : EE

(15) T .&..._,‘_Q,m. s, ..,
gg\mm?m: v% Cmv R ‘

Theorem 11. If C%, i3 not a semigroup, then the %m,:ashm 23 contains a §:£§
subsemigroup of Sy (; namely the. idempotent CheB,). If O is a semigroup,
then it is at the same time the s&nﬁﬁcgi € G4 and (15) 833:3 at 38& r &S@.@ﬁ
elements.

Proof. Let s, be the least integer for which C% is a semigroup.

2) Let first s, > r. Since 07, .C C%*, we have c,C QIL C..:COY...CO%,
The seniigroup property implies Qw: Coy. H.Habom c% wa._ and- 25 EoB-
potent € G4 is the unique mmsumw.ozw contained in the sequence ( 15).

b) Let s, < 7. Then CEC o5 ‘implies (multiplied by o™ oyt
But C}, C O implies €7, C le. Hence O%*" = C7,. Now a power of Ca
which occurs in the sequence (15) more than once is contained in G 4. Since G4
is a one-point group, we concludé that C, is the idempotent € S 4. Eonaoqon
in Sﬁm case the. mmm:oug Cmv E..m m& EOme T g@u@ﬁ EoE_QE.m

WH@HN@ZOH@

[1] Jwo6us 107 M. Oyenrw dan onmumaisros w«i@&&xwwassg ‘HédemepmuHUposariL
AEMOHOMHBIT §=§§§§ Cubnpceruit MaTeM.. :ypHAN § (1964), 337—355.

[2] Schwarz 8., 4 semigroup trédtment o\ somé theorems o non-negative matrices, Czecho-
~slovak Math. J. 15 :83, ﬁmlwmc L =

Hutmomd\mm HEE 24, mem

Qsm&v. Kabinet g&gs@
Q«ee«ﬁ%& akadémie es&
o wﬁﬁsmsg )

o oa@ﬂmms mmoewsm»ﬁmbwmz% HEE%EE
N o Eamemm Ewmvn .

£ 5 s ‘.."./H., wmmsgm ' doiy e b m, o

B oam._.mo vaﬂmsgm mmzoaovzo owoso._.wm =ooamnowmam5mooa= m \mn A3, ..., rae
A — neoTpunarensuas pasiomuman MaTpuLa. ETAN A

228




