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SAMPLING THEOREM IN ABSTRACT HARMONIC ANALYSIS

IGOR KLUVANER, Kogice

In the literature on information theory (see e.g. [1]) as to sampling theorem
it is referred to the assertion roughly stated as follows:

1If the Fourier transform .w.s\v of a function f(x) vanishes for |y| > « > 0 then flx)
8 completely determined by itsvalues at ..., —2h, —h, 0, %, 2h, ... where h = nfa,
wn fact the formula

sin a(x — nh)

f@y="S fuh) (1)

n=—co QA§ —_ 3\&
holds.

The origin of this theorem can hardly be traced. It, or some of its analo-
gues, was published virtually independently by several autors, e.g. [2], [3], [4].

The aim of this note is to establish and to prove the sampling theorem
in terms of abstract harmonic analysis. The réle of real line will be played by
an arbitrary locally compact Abelian group and the réle of integral multiples
of by its discrete subgroup. From the so obtained general proposition besides
the sampling theorem just mentioned some more general statements concerning
functions on real line follow.

The proof of generalised sampling theorem, given in this paper, is based
on some relatively elementary properties of groups and Fourier transforms
on groups treated e.g. in [6] or in the first two chapters of [7]. The concepts
and facts used without reference are to be found there.

Let G be a locally compact Abelian group (written additively) and I" its
dual group. The value of a character y €' in a point x € G will be written
as (x, y).

Suppose H be a discrete subgroup of @ with discrete annihilator
A={y:(y,y) =1 for all y € H}. For y e I we denote by [y] the coset of A
which contains y, ie. [y] = v+ A. If y € H then (y, [y]) denotes, of course,
the constant value of (y, ) on the coset [y].
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The Haar measure on G, resp. I, etc. will be denoted by me, resp. myp, ete.
We normalize mri4 so that mria(I7A) = 1. This is Ppossible mu.:oo.ﬁ\\_ is com-
pact being the dual group of the discrete group H. Let be further ma({2}) = 1
for 2e 4, mu({y}) = 1 for y € H. We normalize the Haar measure nir so that
the formula

[F(y) dmr(y) = [ dmp/a([y)) 2P+ 2 (2)
r ria iea .
for every hon-negative Baire (and every integrable) function F on I holds.
Such a normalization is Ppossible (see [6], § 33 A; [7], §27.3). Finally the Haar
measure g on @ let be adjusted so that the inversion formula for Fourier
transform holds, i.e, by the relations

Joy = J(=2 V)f(@) dmeta), fia) = @, 9)fy) domriy) 3)

the Fourier transform and its inverse is given. The Planchere] theorem asserts
that by the relations (3) an isometry f -» f of a dense subset in L) onto
a dense subset in L(I") is defined. This isometry can be extended by continuity
(in the only possible way) to be an unitary equivalence (so called Fourier-
Plancherel transform) between L¥G) and LXI'). We conserve the notation .m..
for the Fourier-Plancherel transform of an arbitrary function f ¢ L&),

Let further Q be a (Baire) measurable subset of J° containing exactly
one element from every coset of 4, i.e. Q n (y - A) consists of a single point
for every y eI,

The set 2 may be intuitively treated as representing the group I7/4. The

situation in the classical sampling theorem mentioned in the introduction

corresponds to the cage @ — ' — (—, ), H= «oos —2k, —h, 0, b, 2h, ...}

and Q = (—gq, ay .
Put :
Plx) = m (@, y) dmr(y). (4)

Lemma. The Junction @ is by (4) defined everywhere on G. It s continuous,
positive-definite and belongsito L¥G). Its norm n LAG) is 1. We have p(0) = 1.
IfyeH, y + 0, then o(y) = 0 and

% P(x) p(x —y) dmg(z) = 0. (5)

Proof. If we choose for F in (2) the characteristic function xe of 2, we

obtain mp(2) = 1 since Lieaxoly + ) = 1 for all y € A. Thus the .F&@@n&
in (4) exists for all z ¢ @. The equality (4) means that @ is the inverse Fourier
transform of 4,. Since ¥ Is integrable and non-negative, ¢ is continuous
and positive-definite. (The last assertion is a consequence of the Bochner-Weil
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theorem. The positive-definiteness will not be used in the following.) 34 also
belongs to L¥(I'), hence the square of @ is integrable and the Plancherel theorem
implies that [lpfl = [lyoff = 1. _

To prove (5) note, that e — y) (for fixed ¥) is the inverse Fourier transform
of (—y, y)xa(). Using again the Plancherel theorem and (2) we obtain for
all ye H:

m P(x)p(x — y) dm(z) = m 12—y, Y)xaly) dmp(y) HM @ »)xaly) dmr(y) =
= [(y, [¥]) dmr;4 ([]).

rja
Since (y, [y]) is (as a function of [7]) a character of compact group 7/ the last
integral vanishes for every non-zero y € H. It follows at once that ¢(y) = 0
fory e H, y + 0, The equality (0) = 1 is clear.,
Theorem. Suppose feLYQ) and \,C\v == 0 for almost all ¥ ¢ Q. Then fis equal
almost everywhere to o continuous function. If f utself is continuous then

f@) =2 f@p — y) - (8)

yeH

uniformly on G and in the sense of the convergence in LA(G). Furtheremore

IR =2 1)) , (7)
veH

Proof. Since H is the dual group of I'/A, every character of I'lA may be
written as (y, [y]) for some y € H. The set of all characters forms a complete
orthonormal family of functions in LYIA) (see [7], § 38 C).

Denote [E] = {[+] : yeE}forEcT. Putting F = yz in (2) we get mp(E) =
= mr[a([£]) for all measurable sets C £. Denoting Fi([y]) = F(y) for
a function F on Q it follows that F e LYQ) if and only if F1 € LY(I7A) and
JoF(y) dimr(y) = T:EEV dmria([y]). Thus FeLxQ) if and only if
Fy e IAI]A). We conclude that the characters (y, 7} for y € H (more precisely
the partial functions restricted to y € Q) form a complete orthonormal family
in L2(Q).

The assumption and the Plancherel theorem implies that f e LX), Since
\.;O; = 0 for almost all y ¢ Q, there exist numbers a, so that

F0) = 3 ayty, y)xaly) (8)
yeH
in the sense of convergence in L(I). :
Put ¢, (z) = ¢ —y) for y € H. By lemma the functions ¢, are ortho-

normal; g(y) = y(y) = yo(y) and Gy(y) = (—y, 7)xa(y). The Fourier-Plan-
cherel transform being unitary we get from (8)
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f= M AyP_y

yeH
in L2(@) and, consequently, ||f|2 = 2 emlayl
Since mp(Q) is finite, L1(Q) > L¥Q). Hence fe Ly and
f@) = J(@, y)f(y) dma(y)
2l
almost everywhere on Q Since the integral on the right hand is a continuous
function, f is equivalent to continuous function.

The convergence in L2(Q) implies that in L), It follows, that the equal-
ity (8) holds it LYTI") too. Hence if [ itself is continuous, we have

flz) = J@, Nfy) dmr(y) = @) dmr(y) 3 ayly, y)yely) =

yeH
= M Ay .:& + v .Exb@\v QSS.C\V = M AyP-y(x)
yeH yeH
forall z € @, i.e.
flz) = M a_ypy(x). (9

yeH

The interchange of integration and summation is based on the convergence
in LYTI") of the sum in (8) and on the fact that the bounded function (z, y) does
not violate this convergence. The equality (9) holds also uniformly on @, since
for an arbitrary set H; ¢ H we have

(@) = 2 ayp ()| = ﬁ @ vy dmr(y) 3 ayly, y)xaly) <

yeH, yeH—H,
=1 > ayly, y)re(y)] dmr(y)
I yeH—H,
and the integral on the right hand may be made arbitrarily small by the
suitable choice of Hj. '

If we put z = g in (9) for some yy € H, by lemma we have Slyo) = a_,.
The proof is complete.

Choosing @ = I'=(—0w, w), Q= (—ea, &y and, consequently, H —
={.., —2h, —h,0,5, 2k, ...} with ha — » for the function from (4) we get
P(x) == (sin ax)/(cx). Hence, if fel¥—w, ) and x.G\V =0 for [y]> ¢«
we obtain (1),

But from the theorem just proved we may deduce more. If fv) = 0 outside
an arbitrary measurable set Q of numbers pairwise incongruent modulo 20,
then f(z) is completely determined by its values belonging to H. The function
(sin ax){(ax) in formula (1) must be of course replaced by ¢(z) = [, etvudy,
Eg if \&3 = 0 for |y| < 4« and [7| = 6 then f is determined by its values
on H. Using the classical formulation of sampling theorem, however, it were
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necessary to determine its values in points ..., —3%h, —1h, 0, 3%, 2h, ... Tt is
clear from these notes that the converse of the qualitative part of sampling
theorem i.e. of the assertion ,,if the spectrum of a function is concentrated
in {—a, &) then the function is determined by its values in sy —2h, —h,
0, %, 2h, ...“ is not true. A function may possess an unbounded spectrum

and depend only upon its values on H.

If we choose for ¢ the multiplicative group of complex numbers 2 with
[2] = 1 for H the group of all roots of the equation 2% — 1 = 0, we get a for-

_mula due to Cauchy obtained in [2] by the means of the Lagrange’s interpo--
lation formula.
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TEOPEMA OTCYETOB B ABCTPAKTHOM TAPMOHNYECKOM AHAJIU3E

Urope Kaysanex

Peswome

Ilyers G— nokamnmo KOMIIAKTHAA KOMMYTATHBHAR rpynma # I'—ee rpymnma (nempeprm-
HEIX) XapaxTepos. Itycrs H — AMCKPCTHAA NOATPYINA IPYIIEL @, annynarop A KOTOpot
(MHOM™ECTBO X3paKRTepOB, BHAYCHNE KOTOPEIX PaBHo 1 Ha BeeM H) Torme RuckpeTHs. ITycry,:
Rasee, £ — usmepumoe nonmuoectro I', comepsxamee n3 KaMOro Kiacca cMemHocry
N0 /1 paBrHO omuH aaemeHt. Onpenennm Gyrxmmo ¥ paseHctBoM (4), re mp Hazrexammy
©00pasoM HopMupopamman Mepa Xaapa Ha I'. B cratse MOKABEIBAETCA CIENYIOwan

Teopema. IIycrs f — ¢ynxunn us L*@) npeobpasopaune Dypre Koropoit obpamaercy
B HYJIb BHE MHOMeCTBA £, Torpa f mowru BCIOZLy paBHA HeKOTOpOit HeUpepuBHON PyHKnmn,
Ecnu f cama HENPepHIBHA, TO MMeeT Mecro (6) paBHomepHo HA G u B CMHICIIE CXORMMOCTH
B L*G); kpome roro cnpasennuna dopmyma (7). :

Ecan nonostum @ = " — (~ o0, ), H = {oony =2k, —k, 0, B, 2k, ..} (B> 0)
7 Q= —q o), Ime ah =z, 10 ua sroj TEOPEMBl BHITEKAEeT CHPABENIHBOCTE TEOPEMEL
W3BECTHOH B MuTeparype mo Teopuy MHGOPMANKME Hox Ha3BaHKem TeOpeMHt orcyeron Korens-
fiuxopa. B srom cayuae paBencrso (6) momywaer Bup (1).
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