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ON SUBSEMIGROUPS OF SEMIGROUPS

JURAJ BOSAK, Bratislava

The first part of the present paper is concerned with the investigation of subsemi-
groups of the cyclic and of the free semigroups. The cardinality of the system of all
subsemigroups of such semigroups is determined. ,

The second part is concerned with the semigroups in which we obtain from sub-
semigroups by set-theoretical operations either subsemigroups again or the empty set.

In the paper we use the following symbols: The symbol §(N) denotes the greatest
common divisor of all elements of a given set N of natural numbers. The symbol z(n)
denotes the number of all natural divisors of the natural number z. MHUEhR>1is
a natural number, then the symbol V(/) denotes the system of all the sets V <
< {1,2,..., h — 1} containing no number that is a linear combination of the others
with natural coefficients.(?) Put V(1) = {@}. Evidently, 0 € V(%) for each natural
number /. The union or the difference and the symmetric difference of the sets 4, B
is denoted by the symbols 4 U B, A\ B, and 4 A B, 1espectively. The complement
of the set 4 will be denoted by 4*. The symbol C(#, g), where A, g are natural num-
bers, denotes the cyclic (monogenic) semigroup of the type (&, g), i.e. the finite cyclic
semigroup consisting of mutually distinct elements a, &, ...,d* ", where 't =
= g". The symbol a(h, g) denotes the number of all subsemigroups of the semigroup
C(h, g). The other terms and notations are used mostly according to [3,7].

1. SUBSEMIGROUPS OF CYCLIC SEMIGROUPS

Lemma 1. A necessary and sufficient condition for the subset T of the semigroup
C(h, g) to be (with respect to the given multiplication) a subsemigroup of the semigroup
C(h, g), is that there exists a set V e V(h) and a natural x| 8(V v g) such that T =
= [a"] U e[a™], where e is the idempotent, a the generator of the semigroup C(h, 2.3

(1) It is well-known that if the natural # > 1 has the canonical decomposition into primes n =
== pkgt ... ™, then ) = (k+ D+ D ... (m+ 1). Evidently, t(1) = 1.

ANV i.e., no number v € ¥ can be written in the form v = ks + It + ... -+ mu, where k, ..., nt
are naturals, s, 4, ..., u are clements of the set V, different from v.

3) We write a | b, if a divides b. We also use the symbol ¥ = {a” : ve V'}. The symbol [T] de-
notes the subsemigroup generated by the set T. The braces will be omitted where any misunder-
standing is out of the question.
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Proof. 1. Prove that for each Ve V(h), x|d(V u g) the set
T = [d"] U ela”]
is a subsemigroup of the semigroup S. Evidently, it is sufficient to prove that:
beld], ceela] = bceela’].

There exist naturals m, n such that b = @, ¢ = ea™. Since a™ € [@"], m is a linear
combination of the elements from ¥; as x divides all elements from ¥, we have x | m.

Further, x | g, i.e. 8(x, g) = x | m and evidently also &(x, g) | nx so that 8(x, g} | m +
+ nx, therefore the Diophantine equation

m+ nx = ix — jg

has natural solutions i, j. Therefore bc = a"ed™ = ea™*"™ = ea™*™*%#
= e(a®)! € e[a’].

IL Let T be a subsemigroup of the semigroup C(k, g). Let T, be the maximal
group of the semigroup T; put Ty = T \ T, . Form the set of all naturals & such that
d*e T, and delete those which are linear combinations (with natural coefficients)
.of the others. In this way we obtain a certain set ¥ e V(#). Denote by the symbol x
the least natural number with the property ea® € T. Prove that x| d(V U g). If we
denote ea = d, then {d,d? ..., d’ = e} is the maximal group of the semigroup
C(h, g), T, is its subgroup. Therefore T} is the cyclic group generated by d* = ed’,
‘where x is the least natural number for which d*€ T,; from this it easily follows
that x | g. If x| v did not hold for some v € ¥, then the Diophantine equation

= ed™ =

ix+jg=0v
would not have integer solutions i, j. On the other hand the element

he+§n — AQJE;M e N4N

50 that it can be written in the form (&)™ = ea™ = a™*a"™ = a“**™" where m is
a natural number. Hence @' *™* = g°*"*_ Two elements of the finite cyclic semigroup,
written as powers of the same generator, can be equal only if their exponents differ
by the integer multiple of the “period” (g in our case). Consequently, v + vgh —
— (gh + m) x = ng where n is an integer. Hence the equation (2) has the solution
i=gh+ m, j=n — vh, which is a contradiction. Thus it is proved that x divides
all elements from V, and since x | g, we have also x| é(V U g).
Let us prove further that under the given choice of ¥ and x the equality (1) is
wvalid. .

Choose b € T. If b € T, then evidently b € [a"]. It is therefore sufficient to consider
‘the case where b € T,. According to what has been said, T, = [ea”] = e[a"], so that
b € [ea™]. Hence in both cases b € [a"] U e[da’].

Conversely, pick ce[d"] U e[@]. If celd"], then evidently ce T. Further if
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ceela’] = [ea”], since ea”e T and T is a semigroup, we have [ea] < [T1 =T,
whence it follows that ce T.
The proof is accomplished. *

Theorem 1. The number a(h, g) of all subsemigroups of the finite cyclic semigroup
C(h, g\is
Y, 2oV v 2l
VeV(h)
Proof. Let a be the generator, e the idempotent of the semigroup C(h, g). Accor-
ding to lemma 1 all subsemigroups of the semigroup C(h, g) have the form

T = [@"]v ela],

, XV o g) .
ir_m.M h MMMM mL aAz: gw Wrn choice of the subsemigroup T, V and x are zw_\nco_uw
determined. Let us assume that WeV(h) and the umWE.& number y | 8( IC %\
also determine the subsemigroup T. As[d"] v ela”] = la"] ru< eld’], gea rmwo |4 l~ .
Assume that x + y. Let e.g., x <J- We rwﬁ ed” € uswu [a"1v am? 1 =.<<EW~0§ oomw
of generality we can write ea” € e[@’], for if ea” € [a¥], then ea” = ar, w! onmo -M\ s
a linear combination (with natural coefficients) of the elements o.m W. Since W 1 6( v
U g), we have y|w, s0 that we can write @* = @~ iranwn isa an:w uﬂﬂz . m
Consequently, we have ed” = QNE = eled”) = ea” = ea” € e[@". numm a ‘coW:
ea” € e[@), so that ea”™ = ed”, where [is a umﬁcmnm_ E:ucw_.. H.v._mw the .ﬂﬂcﬁ EMB i
such that @" = e. From the condition ea® = ea” we obtain a =a " et Qo%
have n + x — (n + ly) = kg where k is an integer. Thus the Diophantine equation

kg +ly=x

has integer solutions k, L. Therefore y = 6(3, g) | X, which is according to the condi-
i i 1s!).
tion x < y not possible (x, y are natural . o
The assumption of theorem 1 can now be easily proved, if, with each fixed mrwmg
¥V e V(h), we count all possible subsemigroups; there are as many as there are divisors
of the number 8(V U g), i.e. w3V v g))-

Corollaries. 1. The number o(l, g) of all subsemigroups of the semigroup c(, g),
ie., of the cyclic group of the finite order g, is 1(g). The number of all subgroups of
the semigroup C(h, 8)is (g)-

2.6(2,8) = g + 1.

wg) +2,ifgis odd,
3. 003, 8) = w(g) + 3, if g is even.
if g is divisi ither by 2 nor by 3,
: * Wg) +4ifgis divisible neit
4049 =14 &) +5gis divisible either by 2 or by 3, but not by 6,
: «g) + 6,ifgis divisible by 6.
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w(g) + 6, if g is divisible neither by 2 nor by 3,
©(g) + 7, if g is divisible by 3, but not by 2,

5.0(5,8) = ¢ ©(g) + 8, if g is divisible by 2, but neither by 3 nor by 4,
(g) +.9, if g is divisible either by 4 or by 6, but not by 12,
(g) + 10, if g is divisible by 12.

The proof of corollaries 1—5 can be established with the help of the formula
from theorem 1. Considering corollary 1, however, we must remember that each
subgroup of the semigroup C(#, g) is contained in the maximal subgroup, isomorphic
with the semigroup C(1, g) and that each subsemigroup of the finite group is a group.

Theorem 2. Denote the number of sets of the system V(h) by the symbol w(h).
We then have:

(g) + wh) — 1 £ o(h, g) < 1(g) + %szxé.
Vo

Proof. From theorem 1 it follows that the difference o,(g) = a(h, g) — t(g)
reaches a minimum with a fixed 4, if g = 1, namely ¢,(1) = w(h) — 1. g,(g) reaches

a maximum, if g = k!, namely g,(h!) = X 1(8(V)) where the summation is taken over
all Ve V(&) not equal to . Whence follow the proved inequalities.

Corollary. t(g) + h— 1 = o(h, g) £ va + @I -DE¢ - 1.

The proof follows if we use elementary estimates for the expressions in the inequa-
lities of theorem 2.

Theorem 3. Let S be a free semigroup over the set M. Then it is true for the cardi-
nality f of the system of all subsemigroups of the semigroup S that:(*)

No, if|M|=1,
f=14%, ifl<|M]| <N,
2T M| 2 R,

Proof. 1. Let | M| = 1. Denote the (single) element of the set M by the symbol a;
then S = {a, a?, &> ...} is an infinite cyclic semigroup. Since [d], [a?], [@®], ... are
mutually different subsemigroups of the semigroup S, f = N,. To prove that f < N,,
let us assign to any mcvmoimmaozw T of the semigroup S a finite set 7" of naturals
thus: Let n be the smallest natural number such that ¢"e 7. T’ will then consist of
the number n and of all naturals ¢ > n such that ' € T, but & " T. T’ is a finite
set, since from each residue class modulo 7 it contains at most one element. Evidently,
different finite sets are assigned to different subsemigroups. Hence the number f
of all subsemigroups of the semigroup S can be only less than or equal to the number

of all finite sets of naturals. Therefore f < N,. From the assertions f < N,, f 2 Ng
it follows that f = ;.

(%) The symbol | M| denotes the cardinality of the set M.
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4 — 8. therefore the cardinality of the system
Llet 1 < | M < Ny, Then | 8] =N, € : .

of M: M.Mcmoam o_m EM set % is 25! = 2o =N, so that f = N, It is therefore mﬂmmo“gﬁ
to prove that f = R. Let us choose a,be M (a + b). Let us form the set .E =
= {ab, ab®, ab® lw The set M* has N subsets, each of which generates a different
ubsemigroup of ¢ i fore f = N. .

bsemigroup of the semigroup S. There
mcawm. Hmn“ | MA_ > N,. Then | S| = M|, so that fs w._m_ = 2™ The set Erw.m
9™ sybsets, each of which generates a different subsemigroup of the semigroup o.

: _ oM

Therefore f = 2M|, and hence f = 2" . .

MMS w\,ﬁ evidently follows from the proof that the theorem remains valid if,
i it idi he commutative law in S.

addition, we suppose the validity of t o
" Note 2. The first assertion of theorem 3 (case | M| = 1) says that the infinite
cyclic semigroup has exactly N, subsemigroups.

Theorem 4. All cyclic semigroups S, including exactly n subsemigroups (n £ 5)
are given in table 1 ( where p, q are primes).

Table 1

1 a1y

P

2 ce,n
c(1,p)
DR
3 c3,1)

C(2,p)

ci,p?)

|
4 cG3.p) p*2
c@.p?)

c.p®)

C(1,pq) p+4q
-
5 c@,1)

c@3,2)

cG.p?) p+2
c2.p®)

CQ2,p9) p+4q
c,p*)

litiesh = 1,7(g) 2 1,7(g) + 1 = 1< ok mv.m
he evaluation of the function (g) moooz.:sm
ed under these conditions will be verified

\wro proof follows from the inequa
< 5 (corollary of theorem 2) and ?oa.ﬁ
to(}). The semigroups that can.be consider
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according to the corollaries of theorem 1 and the number of their subsemigroups will

be found. We shall see that, apart from C(3,4) a
’ 5 nd C (4, p), all
than 6 subsemigroups. ) (4, p), all of them have lesg

Note. The mentioned results were used in [2] to obtain some results formulated
and uﬁﬁw.m_mo deduced with the help of the theory of graphs. Conversely, usin mm
we can omm_._w establish some results, closely related to the subject of our F“Rmmmmm "
and not using any terms from the theory of graphs. These are the results: "

1. A semigroup has 1o proper subsemigroups if and only if it has a single element
.ﬁ mo.__oim from lemma 2 in [2]; this result, of course, is evident directly; we are Eobmon“
ing it for the sake of completeness.

2.A semigroup rm.m no proper subsemigroups(®) apart from one-element subsemi-
groups if m.ba only if it has less than three elements or if it is a cyclic group of a prime
order. (This follows ».moB theorems 2 and 3 in [2].) Tamura devotes his paper [13]
to another proof of this assertion. Both assertions are found in Chion 5], generalized
for convex subsemigroups of partially ordered semigroups

3. A semigroup has a finite number of subsemi if if it i

. migroups if and only if it i
This follows from lemma 2 in article [2]. ’ s faie.

4, If a semigroup has less than 5 subsemigroups then it either consists of two

&oBconE.m or has a single idempotent. All semigroups with less than 5 subsemigrou
are determined in theorem 3 in [2]. ’ i

2. SEMIGROUPS WHOSE SYSTEM OF SUBSEMIGROUPS
IS CLOSED WITH RESPECT TO CERTAIN SET OPERATIONS

It is well-known that the system of all subsemigroups of a given semigroup (with
the wE@Q mmn added) is closed with respect to the operation of intersection so that
the intersection of two subsemigroups is always a subsemigroup or an empty set ()
In [1] we ooSm.EmHom semigroups with a system of subsemigroups closed with _.omvaom
to H.ro.obo.ﬁmcou_ of union. Such semigroups are a special case of semigroups with
a distributive lattice of subsemigroups (with the empty set added and with the orde-
ring by means of the set inclusion); this lattice will be denoted by Z’ — see, e.g. [10]
With the investigation of semigroups S, for which X'(S) is a &magmwa._mﬁan.
papers .T: 10] are concerned. Now we shall consider semigroups with a system om..
subsemigroups (and @) closed with respect to other set operations. I wish to mention
that the systems of sets closed with respect to certain set operations were studied b
Kluvanek [6] from an abstract point of view. ’

5 :
(°) Tamura {13] does not consider one-element subsemigroups as proper subsemigroups. We

use the term proper subsemigroups of the semi i
group S in the sense of L i i i
groups that are different from S. yapin il Le. ss subsemt
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Theorem 5. The following five assertions are equivaleni:

(1) The set difference of any two subsemigroups of the semigroup S is either a sub-
semigroup of the semigroup S or 4

(2) The symmetric difference of any two subsemigroups of the semigroup S is either
a subsemigroup of the semigroup Sord;

(3) The complement of any proper subsemigroup of the semigroup S is the proper
subsemigroup of the semigroup S;

(4) It is true for any two elements ab of the semigroup S that ab € {a, b};

(5) All non-empty subsets of the semigroup S are, with respect to the given multipli-
cation, subsemigroups.

Proof. It is evidently true that @ = (5), 5)= (). The implication (1) = (2)
follows from the relation

41 B = {S\ IS\ D\ BIN\ A\ A\ B)}:
valid for any 4 € S, B = S. The implication (2) = (3) follows from the relation
A* =8 1 4,

valid for any 4 < S. Therefore only the implication (3) = (4) remains to be proved.

Let (3) hold. We shall prove first that any element a € S is an idempatent. Since
[a?] is a semigroup, [2%]* must also be either a semigroup or the empty set. If ae [a*1%,
then would a® € [a?}*, which is impossible. Therefore a € [a*]*, so that a € [d’).
Whence it follows that the element a has a finite order and the semigroup [a] contains
an idempotent; denote it by e . {e} is a semigroup, therefore also {e}* is a semigroup
or the empty set. If a =+ e, then would a € {e}*, and consequently {e}* * 0. There-
fore e (i. €., a power of the element q) also belongs to the semigroup {e}*, which is
not possible, since e € {e}. There remains the only possibility that a = e, ie., ais
an idempotent.

Let a,be S. The element ab is an idempotent; therefore {ab} is a semigroup,
{ab}* is either a semigroup or an @.1f a € {ab}*, and b € {ab}* as well, then {ab}* *
+ 0, i.e. {ab}* would be a semigroup; in that case also ab € {ab}*, which is impos-
sible. Therefore either a or b belongs to {ab}, i.e. abe {a, b}.

Notes. Shevrin [9, 10, 11} proved that conditions (4) or (5) are equivalent
with any of the following conditions (he calls such semigroups a “strong band of
one-element semigroups™):

(6) T'(S) is a complemented lattice with unique complements;

(7) ='(S) is a modular lattice with complements;

(8) X'(S) is a Boolean algebra;
and in case of a commutative semigroup S even with the following condition:

9) T'(S)isa complemented lattice.

Ego |4, theorem 8.4] mentions similar results. The structure of all semigroups,
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fulfilling condition (5) was described by R édei [8, theorem 50, p. 85]. The semigroups
S, whose system Z(S) of all subsemigroups (without @) is a Boolean algebra, are
considered in [12].
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O ODOAMNOJVIPYHIIAX HONVIPYII
IOpait Bocak
Pesome

B cTaThe YCTAHABIWBAETCH MOIHOCTS MHOXECTBA BCCX HORDOTYTPY I LUMKITRYECK O NONYTPYIIBL
¥ cBOGOIHOH HONYIPYIEI C HPOR3BOMLHEIM YHCIOM 00Pa3yroIHX. B paGoTe HalineHEl BCE IUKIHM-
vecKHe MONYTPYIIBI ¢ MCHBIE, €M 6 MOMIONYrpymuaMe, H AaHA XapakTeprsalfs IONYTPYIHT,
CHCTeMA [IOMIONYT Py KOTOPHIX 3AMKHYTa OTHOCHTEIBHO HCKOTOPBIX TEOPETAKO-MHOKECTBEHHBIX
onepaiuit. VKa3bBaeTCs, KAaKHC JANbHEHINNE pe3yibTaThl MOXHO HONy9dTh ¥3 [2] npy moMomm
-Teopwt rpathop. ITomyueHHBIE PE3YILTATH CPABHUBAIOTCA C PE3yNBTATAME RpYTAX aBTOpPOB.
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