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TO A PAIR OF COMPLEX CONJUGATED
EIGENVALUES

1VO MAREK, Praha

INTRODUCTION

In the numerical praxis of the last years there occur more and more non self-
adjoint eigenvalue problems. The solution of practical problems makes demands,
on the one hand, the theoretical analysis of the mentioned problem and, on the
other hand, its numerical analysis. The problem of approximative construction of
the eigenvalues does not seem to be satisfactorily solved yet in any of the directions
mentioned instances, particularly in the case of complex eigenvalues. It is well known
(see [S]), that for the construction of the eigenvalues of linear operators the iterative
methods are advantageous. However, most papers-concerned with the construction
of eigenvalues demand the symmetry of operators considered or at least require the
constructed eigenvalues to be real.

In the recent paper {1] there is considered the problem of the approximative
construction of the eigenvectors corresponding to the pair of complex conjugated
eigenvalues lying on the boundary of the spectral circle of a given real matrix and
the problem of the construction of the eigenvectors mentioned. The absolute value
and the argument of the sought eigenvalues are constructed in [1] step by step by
iterations; the corresponding eigenvectors can, however, be obtained from the
formulae given in [1] only in exceptional cases.

The purpose of our paper is to show in what way the knowledge of the approxi-
mations of the absolute value and the approximations of the arguments of the eigen-
values described above can be used for the construction of the corresponding eigen-
vectors. Contrary to the papers [1], [5] we do not assume that the spaces occuring in
our considerations are finite-dimensional.

Some functional analytical methods, particularly the operational calculus in the
algebra of a linear bounded operator of a Banach space into itself, are used. The
approximations of the eigenvectors mentioned are constructed with help of iterations.
The convergence of the sequence of iterations follows from the theorems on Cesaro
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iterations of a linear bounded operator. These theorems are published in the paper 31.

In the present paper we also prove some of the statements given in [3] without the
proofs.

L NOTATIONS AND DEFINITIONS

Let Y be a real Banach Space and let X be the complex extension of the space ¥,
ie.zeX<z=x 4+ iy, where x, ye 7, i% = —1. The norm in the space Y will be

denoted by the symbol I y- We supply the space X with the norm defined by the

following formula

Fzllx = sup || xcosg + ysin § ||y,
059<2n

or with some equivalent norm. Further let ¥ be the space of the continuous linear
forms on ¥ and let [Y] be the space of bounded linear operators mapping Y into
itself. The norms in ¥’ and in [Y] are defined as follow:

Ny My u__ m_wn _:\8_. yeY, yey’
Yily =

0T Iy, u__ wé I Zylly, yevy, Tely],
Yllr=1

where | y'(y) | is the absolute value of the number Y'(¥). In cases where it does not
cause a Emmccaﬂmgnambmw the indices of the norms will be omitted.

The complex number 4 we shall write as o = e exp {ip} so that the complex
conjugated number x has the following form: & = g exp {—ip}.

The object of our considerations will be an operator T'e [Y] about which we shall

assume that in its spectrum o(T) there lie at least two eigenvalues My, 1y and that the
relations

\Mn ” Ha,s
hold for iea(T), A + K, f=1,2,
The operator T e [Y] can be extended from ¥ onto the whole Space X by the formula

Tz = Tx + iTy, where z — X + iy. By the symbol [X] we denote the space of linear
bounded operators mapping X into itself with the norm

A <p(ml=pn) (L)

i H:Q& = sup {| Ix |y,

lxflx=1

xeX, Te[Xx].
We denote by the symbol @ the Zero-operator and the identity-operator by the sym-
bol I. We assume further that the eigenvalues #1, K, are simple poles of the

resolvent R(A, T) = (1f — )™ (A - a complex number),
Let

1,2,

%Q.. Nu ”»W,MVA& - Ib»m..: +»HM—Q - .:g.vl»h.c.v Jj= Q..Nv
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be the Laurent expansions of the resolvent R(2, T) in neighbourhoods of the poles
H1s f. It is well Known (see [6] p. 306) that

1

B, = =1 R(A,T)d), j=1,2, C.uv
€y
Bisr,j =(T—wh)B,;, k=12,..;

where C; = {4]]|1 — #; | = g3} and the radius ¢ 5 is such that — with the exception
4 . 3 .
of u; — there does not lie another point of the spectrum ¢(T) either on C; or in the
interior of C;.
From the assumptions and from the spectral theorem ([6] p. 304, theorem 5 . 71-D)
the operator T can be expressed as

1

T = E-W: + E»W: + 2ni

% AR(4, T)d4,

C

where C= {A|[ 4] < g3, 0, < 4} assuming that in the interior of C there lies the
set o(T) — {uy, 41,}. From the same theorem it follows that for any integer n = 0

"n 1 nps : 4
T"= piBy, + uiBy, + i .‘.» w&u T)da. 1.4)
¢
For any n = 1 we put
LS uri 1.5)
= — R (1.
Si n *Mw H
Us IPM,U k wikTE, (1.6)
n = n = \s J
Let y;e Y’ and x¥ e ¥ be such that
Pi(Bx') + 0 (1.7}

hold for j = 1, 2.

2.AUXILIARY STATEMENTS

In this and in the next paragraphs we denote by symbols ¢, €3, ... the constants
independent of n, where n = 1,2,...

Lemma 1. There exists a constant ¢; such that
S, — Bl £ ¢nh, =12 2.
Proof. First we prove that the sequence of the operators
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L

w, = L 5 i 4\
in n = IMMH H xALJ N-VQN
C

converges in the norm of the space [X] to the zero-
From the assumption it follows that for e Cit

operator & when n - oo,

holds [Au; ' =y, <1, so that

n yl k n
and thus A o _ - i
1 :
1l s — .- L~ wsup | R, 7). @2)

In the second part of the proof we shall consider the sequence of the operators

Evidently we have

L3—je 2.3

lonl s 3151 | £ (4]

Let us put (&l = exp {iB;}, where BiJj=1,2, are real. We then get

1 — e

el = 518051 21

1— ¢t

F nowp .AN.NV, (2.3) and from (2,4) there follows .1).
Similarly we can prove the following lemma:

Lemma 2. There exists o constant c,

HU < e,

2

gy Bus-il- @4

dependent neither of n nor of s such that

=12, 2.5

J
Proof. According to (1.4) for a given integer 5 > 0 we have

s 1 "
Ujn=Lpu+K;, L, =X Y
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We get easily the estimate

I Ko < n°~es sup W__ R@D]. 3

AeC

IA

i
4

w
T
<n iy sup | RGL T) .

Y iec

1 X (K (A AV
b= £ (5) s 2 5 (5) (e o

so that we obtain the norm-estimate
HLpll =n* (| Byl + 1l Bos—; 1l }.

‘Eﬁomnﬁmﬁmomkg..:hg.aﬁmaﬁogoimananwzamﬁo 2.5).
Remark. Lemmas 1 and 2 hold also if more general assumptions than those made
in the first paragraph are fulfilled. Some simple generalizations are given in the two

following lemmas 3 and 4.

We further have

Lemma 3. Let us assume that the operator T € [X] has the property that on the
boundary of the spectral circle there lies a finite but otherwise arbitrary number of
simple poles of the resolvent R(A, T). Then the estimates (2.1) and (2.5) hold.

For multiple eigenvalues we have:

Lemma 4. Let us assume that on the boundary of the spectral circle of the operator
Te[X] there lie p mutually differen: eigenvalues Mis-eos By Let g4, ..., q, be multi-
plicities of the poles py, ..., pu, of the resolvent R(A, T).Let1<r=<p,q2g;
forj=1, ..., p. Then we have

1 n B _ tln-i.u —Om:
Rl Na gr+1 kpk r < .
I'n »M_ woT (g, - D! Borll = es n

The proof of the lemma 4 we shall not give, because it is possible to prove lemma 4
in the same way as theorem 4, which is to a certain degree a generalization of lemma 4.

Lemma S. Let us assume that for the terms of the sequence {Ajn} the following
inequalities

[ Ajw ~ 1] S eeun™17° (2.6}
hold for j = 1,2, n = 1,2, ..., where 8 > 0. Then the sequence defined as
Xy = 1 Y AR T© @7
LU =g}

converges in the norm of the space X to the vector X;. Further it holds that

x; % 0, (2.8)

: Hu.: - .K.-. : .M ﬁwRJE ANOV

Tx; = mx;,

where o = min (1, §).
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Proof. Evidently the following expression is true
H n
Xjn = X; = (S;y = By;) x© 4 7 2 (R~ 1 T,
k=1

From lemma 1 jt follows that

I Smx® — B, x| < L)X, | (2.10)

. . - s
so that it suffices if we consider the vectors L. X (A~ ur T o the opera-
ns ’

tors
) A _
Zjn = n > (A~ 1) T,
k=1

According to the assumption (2.6) we have 1 A,1 2

¢6 > 0. There exist the functions
€7 = ¢j7(n) such that

K ¢;2(n) \
,ﬁlu+ h:a ’ _«..:A::Mﬁm.

From this expression it follows that

k "
bv =14 () calt) | (k) ity

&. 1+s + ...
Jn n 2 n2tao >

50 that

L& (k) e
G IR =ik
Zin n »NMM .AMHN s =mﬁ+$ H T =

HWM:U ¢jr(n) W k ~kopk
LY !ui+3 .»nh s J .

According to lemma 3

: mn lm:lm
N. M m .ﬁwﬁu”n lm M!ﬁﬁm.x ...— -
= \= = uMn 3.4: +m.v.\. 2 2Cgn 7, 1 nmSl.m..lll =< Coll s
which together with the estimate (2.10) gives the estimate (2.9),

Hwowﬂoﬁw (2.8) it is sufficient to remark that from (L.7) there follows the relation
B x4 p so that E.o vector x; = B, X9 is an eigenvector of the operator T
corresponding to the eigenvalue y;. Since, according to (1.1) we have

ANJ _ E...Nv x; = ANJI E\Nv W:XAS = wn.-..vnaov = () AmmSOo .mwu. = @v

The validity of (2.8) is proved and thus the proof of lemma 5 is accomplished,
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3.ITERATIVE PROCESSES

The purpose of this paragraph is the proof of the convergence of some iterative:
methods for the construction of the eigenvalues u,, Hy = p; and the eigenvectors.
X1, X2 corresponding to these eigenvalues.

Let
X = TN g 3.1y
45 = [yfx )] = yifx+ D).y a0y, (32)
The elements of the sequences
yi(x©), yix®), ... (3.3}

are real numbers according to our assumption that Te[Y), X ¢ v V;eY'.
According to [1] we define the indices n] as follows: The symbol n,j=1,2;
k=0,1, ... denotes the index of such element of the sequence (3.3) for which the
relations sign y(x" V) = —1, sign ¥i(¥™) = +1 hold for the k-th time, Among the
numbers (3.3) there can occur the null-elements. In that case the corresponding zero-
element has the same sign as the first non-zero element, which follows after it

We define further ([1])

Pi=nl, —ni, j=1,2; k=0,1,... (3.49)

J

With the help of (1.4) we get for the vector x™ the following expression
X = ix, 4 p "%, + w®, (3.5)

where x; = B ¥, x, = B ,x©, ™ _ (12mi) [ A"R(A, T)dAx®, so that
C

W™l < e00% (3.6)

where 03 = §g, 0 < ¢ < 1 is the radius of the circle C,
The eigenvalues y,, u, can be expressed in the following form

Uy = pe'®, iy = pe” 0<¢ <2n 3.7
Further let be .
Vi) = €, yix) = e, (3.8)

Theorem 1. Let us assume the validity of (3.8). Then there exists a constant ¢, , such
that
B“.*. 1 2 n .
ol Seuds j=1,2 39
4;

Proof. We evidently have R
yix™) = u'y;exp {ing + in;} + Wyjexp {—inp — i} + 1,
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where 7, = y'(w™), 50 that - -

I M| c12i'q". (3.10)
Easily we get that -

Y™y = 2v;u" cos (ne + %) + n;,. 3.1

From this expression it follows that

45 = dvu sin%p + L 3.12)
where

Cin = 5«: + AS..:NS.._ cos (np + ;) — N&t._n_S....: cosf(n — 1) o + o] —
— 2yt Min-1C08[(n + 1) o + o] — n;,

:l.—vws..a.?— S

Thus there exists a Constant c,, with the following property

_ﬁ...a _ M hnutuaﬁa. . .\ = h. 2. Aw.uwv
The identities

n+1 1 + 2 m“.hm. n. 2
4] = 4vin sin“¢g
=pf— P
e S jn

i 1+ S

) Aewtm..mENe

follow from the relations (3.12) and the esti
inequalities (3.13).

Corollary 1. T#e Jellowing inequalities hold:

n_a+~ _ .
M_._ l t\ = c4q”, Jj=1,2; n>n, (3.19)
7

N_,.*
ﬁ&onnaiu mcc s ) c11 and where o denotes some positive integer.
" '
7

Proof. According to (3.9) we get

n+1
a7t
a

J

2¢5>0

for n sufficiently large, Say n > ng and thus according to the identity

Aw\kni ltV! km.: §~ A/\N_m+_ n -1
N_u A% m_“

J

N w
we obtain (3.14) with ¢,, = sup A 4] 1. W
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Theorem 2 [1]. The relations

.. Na h
_ .,_.UM_ &u |e;+ n;?vﬂ 3.5
hold for the sequence {P}} of the numbers P% defined above, where leiem) | < €17-

The proof can be carried out in the same way as the ?A.Von. of the corresponding
theorem in the case of the finite dimensional space. F.E_m .ommo M&.QV can be, for
example, the value of one of the coordinates om. the finite dimensional vector X =
= (¥4, ..., x;). The mentioned proof is given in vmwon.z. .

Combining theorems 1 and 2 and lemma 5 we obtain the following theorem:

Theorem 3. The sequence of the numbers {4;,}, where Ajn = i XD {io;.} and
where

L u,\ i = — (3.16)
! 43 1 y P
n =

converges to the eigenvalue y; of the operator T and we have the estimate

1 ;
- [ — ;] 18 J=12 G.17)

The sequence {x)n}, where

s Th®,
1

D

1
Xjw=—
jn n

cunverges in the norm of the space X to the eigenvector x; corresponding to the eigen-
value p; of the operator T.

Proof. It is sufficient to prove the validity of the inequalities (3.17). From corol-
lary 1 it follows that | u;, — u| < c;.q" or Hin = p + O(¢") and from theorem 2
we can obtain the expression

2ni
Hin€xp {ig;} = [ + O(q")] exp L

P,+0(—
n

i L % P%. In other words 4, = p;q exp {ig;,} = uexp {ip} +0 1
where £; =lim— ¥ P Ino n = tjn y

n
nsw N k=1 .
and thus the validity of the estimate (3.17) is proved.

From (3.17) it follows immediately that .

| Ajnz — pexp {ip} | < ¢;gn?

so that according to lemma 5 with § = 1 the sequence {x;u}s

I & ki (o)
. .N.\.a = —— MU \_.&.zNﬂ X0,
n =y
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converges in the norm of the Space X to the vector X; and the relationg Tx; = px i
J=1,2 are valid.

Let us once more turn to the case, where there lie on the co::a»@ of the spectral
circle an arbitrary but finite number, in general, of multiple poles of the resolvent
R(A, T). We shall assume that 4, ..., K, are these poles and that 915 .., q, are the
corresponding multiplicities, If the value y, 1 < » = p is known, not only approxi-
mately but exactly and if s > giforj=1,..., D, j ¥ r, then similarly as in lemma 5
it is possible to obtain the corresponding eigenvector using the formula

n

. o w Y kTR ) (3.18)
k

=1

We assume that
B, x9 % ¢, B x® =0, (3.19)

where B, B, are defined by the Laurent expansion

RAT) = ¥ (1 - ), + Z Buld =)™

Theorem 4. The Sequence (3.18) converges in the norm of the Space X to the eigen-
vector x, corresponding to the eigenvalue u, of the operator T, ie., Tx, = X,

Proof. According to the assumption of the theorem:

lH:Jiu ::H x., 5 (0)
xz_l ﬂaM_ » &.ﬂmwﬁfv T] x4 i )\ R4, T) axx, ,
é

where the interior of the circle ¢ = {14 ;_ =lumlq qg< 1} contains the set

QA..N«V - @:: “r s thw.

1 AN y
Hylp;, T] = i Aﬂv R(4, T)da,
Cji

where Ci={]|1-~- Hil=o¢ ;} and @; is such that neither in the interior of C;
not on the C; there lies another point of the spectrum a(T) besides u;.

u =1
i, T =3 1)
h=1 o

FE

here Jul) = Qi Y S501) = @1a2) 181G s, Thus

q; tl:; i k—h+1
Hlu;, 7] = B,, + L ke~ 1) (k- h +2) = ?ﬁv B,;.

286

From this expression there follows according to (3.19) and according to that s > m
J # r the validity of the expression : :

AQ... - Hv_ U

where zj, contains the elements Wy, for which || wy || M.OQWJ. Since |{ z; || <
= ¢19k™" with some constant €1 independent of k, we get the estimate

< OA log :v .
- n
Finally we obtain the expression

w —g; —s+1
1 & g —s+q; [ Hj FeEpl - Hy il +(0) Uy B (0) +vp
Yon = lxl»M~ W‘M k Ga. = 1) wmtx‘ & (s~ ] e o

ot aln..+~ t\ k—s+1 ©
wlu:mw_”tﬁ T]=k™s*u =L B, '+ zy,

n 1

1
|=|MN;

k=1

i=1 e

J#r
where \

12 1 A )
. . ) R(, T) dax@! .
n= % fewt o [(£) ey
C
Thus ‘
1 .
lom]| =0 AM. log =v . (3.20)

We further have

R N
- k stqy l’&l.v B x{ M
KM n *Mn AF @\ — 1)1
ikr
1 &5 Ev.?ei oy ©
s~ e . A B <
Ton &.MH *M_ AF (g; — 1) I B, I
Jkr
1 2 ‘ 2 : FJ:: ©
" . | By, |, 3.21)
=% Q.M_ I'sineg; ‘Aﬁ ~1) [ Bx?| (

where exp {ie,} = wlu,.
From (3.20) and (3.21) we obtain the estimate

1
< ees
HQA: _om=v,

which shows the validity of the first part of theorem 4.
Tt remains to be proved that

hlm+~ ©)
r
¥ T =Dy B

tln+~ .nov
Xp = hMl Hv_ wusun..




is an eigenvector corresponding to the eigenvalue y, of the operator T. But this asser-
tion follows _.SEn&waG from (3.19), since

~s+1

AN. - .:kv Xp = Ab..:”u Hv_ mm+~...kuov =0

Remark. The Q.mmsﬁ::mm can be considered ag known, if we know that they are
solutions of a known algebraic equation which can be solved exactly. This is for
instance the case of the cyclic kernels (see [4] p. 152) or the case of the stochastic
Matrices (see [2] chapter XII). In these cases the mentioned eigenvalues lie on the
unit circle and are the roots of the binomial equation

where d is so called index of imprimitivity (121, p. 345).
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O Evﬂmb&%mmmoz NOCTPOEHUM COBCTBEHHBIX BEKTOPOB
OOOme.HOHwSOESN ITAPE KOZumeOE0.00EWMVHmEEEX
COBCTBEHHBIX 3HAYEHU I

HBo Mapex

Pesrome

. h
CBOHCTBaX locnenoBarensHoCTH oneparopor ?L M 3.15,&. » TAC pn HekoTOphle MpMGmIKe.
k=1
HUA OHOTO M3 OTMeveHHBIX COBCTBEHHBIX 3HAaYeHMI,
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