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LINEAR FACTORS IN LATTICE GRAPHS

ANTON KOTZIG, Bratislava

Let all &, &;, ..., &, be integers > 1, n a positive integer. Similarly as in paper [1]
we mean by a lattice graph G(¢,, &;, ..., £,) a graph(') wherein: a) the set of the
vertices of the graph is the set ¥ of the points of the Euclidian space E,, defined in
the following way: point x with the co-ordinetes x,, x5, ..., x, belongs to ¥ if and
only if for all i = 1, 2, ..., n, x; is the positive integer <&,; b) two vertices from V
are in the graph G(¢,, £, , ..., &,) joined by one single edge if and only if their distance
is 1. If the edge & in the lattice graph G(¢,, &,, ..., £,) joins the vertices x = (x,,
Xy, o0y %), Y = ¥y, Y2, ., ¥ and x; + y,, the oamm will be said to be parallel to the
axis X. It is evident that after the removal of all edges from the graph G(¢,,&,, ..., &)
paraliel to the axis X;, we shall have a graph with £, components. All these components
are isomorphic and are called layers of the graph G({,, &,, ..., £,) in the direction of
the axis X;. Let us define the &-th layer in the direction of the axis X thus: the vertex

= (xy, X3, .-, X,) belongs to the k-th layer of the graph G(¢,, &,, ..., &) in the
direction of the axis X; if and only if x, = k. It is evident that the edge joining the
vertex @ = (a,, a;, ---, a,) with the vertex b = (b,, b,, ..., b,) belongs to the k-th
layer in the direction of the axis X if and only if a; = b, = k.

We shall say that the vertices x = (x;, x5, ..., X,), ¥ = (P, V2, .-, ¥,) have
a common projection in the direction of the axis X, if x; = y; forallj # i, je {1, 2,
..., n} and we shall say that the edges g, h from G(¢,, m? ..., £,) have a common
projection in the direction of the axis X; if neither the edge g nor the edge 4 are
parallel to X; and if the statement holds that both the one and the other vertex
incident at the edge g have a common projection with the vertex incident at the
edge /. Similarly: a subgraph or a partial graph or a partial subgraph(®) G; of

(Y) The difference is that now we admit also n — 1, while in paper [1] we assume n > 1.

ANV I introduce, analogously with Berge's distinction in the theory of (oriented) graphs, the
following distinction between a graph and a subgraph: if I delete from a certain graph G only some
of its edges, I shall have the partial graph G'; if I delete from the graph G some of its vertices and
besides only the edges incident at those vertices, I shall have the subgraph of the graph (see [2]).
If I do not delete anything, I shall have both the subgraph and the partial graph.
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the j-th layer in the direction of the axis X; has a common projection in the direction
of the axis X; with the subgraph or the partial graph or subgraph G, of the k-th layer
in the direction of the same axis if and only if there exists such a simple mapping
of the graph:G; on.the graph G, that an element in G, and its image in G, have
the same projection in the direction of the axis X.

Let in the lattice graph G(¢,, &,, ... £,) the edge g join the vertex x with the
vertex y and let the edge g join the vertex x with the vertex j. The vertices g, g are
said to be near if (1) {x,y} n {x, y} = #;(2) in the graph G(¢, &, ..., £,) there
exists a quadrilateral including the edges g, g. The remaining two edges of the
mentioned quadrilateral will be called the “rungs” of the near edges g, g. It is evident
that for every pair of the near edges there exist in the lattice graph exactly two
“rungs” that are near edges, and that the “rungs” of the “rungs” are the two
original near edges.

Lemma 1. Any SSMQ:Q: of the finite graph with a linear factor has an even

" number of vertices.

The proof (which is very simple and can be easily omn&:mrma by the reader

EanE is mEg in umumn [3] (see KEBm C

‘5_835_ 1. In the lattice graph G(,,&,, ..., &) with an even number of vertices
there exist n and only n such linear factors no two of which have a common edge.

Proof. That in the graph G(¢,, &,, ..., £,) there can exist at most n such linear
factors no two of which have a common edge is evident from the fact that the vertex

= (X5 X2, --». %), forwhichx; = x, = ... = x, = 1is incident at exactly n edges.

hoﬁ us H:.o<o 5& Eﬂd exist n such linear mmoﬁoa of the mn%w G(¢y, E2s ooy E)-
For n = 1 the theorem evidently holds, for in the lattice mnmur G(&,], where &; = 2p,
the set 0». m: such edges of the graph that join the vertex (2i — 1) with the vertex
20);i = ., p is the set of the edges of the linear factor of the graph G(£,).
Suppose Em: Eo theorem holds for alln £ m; n = 1 (where m is an integer > 1) and
let us prove that from the aforesaid assumption there follows also the validity of the
theorem for n = m + 1.

Let (¢, &35 -+ &my 1) be an arbitrary (m+ 1)-dimensional lattice graph with an
even number of vertices. As the form of the graph does not depend on the order by
which we denote the . axes of the co-ordinates, we may suppose without loss of
generality that ¢, is‘an even number (§; = 2p). Let us put £,,,; = s for the sake of
simplification and denote by the symbols G, G,, ..., G, the first, second, ..., s-th
layer-of the graph G(¢y, &,, ..., &,,,) in the direction of the axis X, +1--Bach of
these layers is isomorphic with the lattice graph G, = G(¢,, &5, ..., &, Since &, = 2p,
G, has an even number of vertices and according to our assumption there exist such
linear factors L, (1), L,(1), ..., L(1) of the graph G, , no two of which have a common
edge. Let us denote by the symbol L(k) such a linear factor of the graph G, that has
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a ooEH.don projection in the direction of the axis X1 With the linear factor L(1)
(the existence of such a factor follows from the aforesaid isomorphism of layers). .raﬁ
us further denote by the symbol Fik) (k= 1,2, ...,5 — 1) the set of all such edges
from G(¢,, &,, ..., &,, ) that Join the vertex from G, with the vertex from Grpq-

A. Let s be an even number (s = 2r). Let us denote by the symbol L), , a partial
graph of the graph G(¢,, &,, ..., ¢$m+1) including all edges and only edges of the set

b FQk — 1)

% s
and let us put L; = »fu__hg.Q«v for all j=1,2, ..., m. It is evident that for any k =

= 1,2, s M + 1 Ly is a linear factor of the graph G({,, &,, ..., &,,1) and no two
different linear factors from the aforesaid m + 1 linear factors have a common edge.

Hence m.u the case of s = 2r there follows from the validity of the theorem for all
n < m its validity for n = m + 1.

B. Let s be an odd number; s = 2r + 1. Let us denote by the symbol L) the

partial graph of the graph G(¢, , ¢,, ..., ¢ma4 1), including all edges from L (1) as well
as all the edges and only edges of the set_

%uw. F(2k).

- Let us denote by the symbol Ly, the partial graph of the mme..mSmr. containing .

such and only such edges: all edges from L, (s) and the edges of the set

U A2k - 1).
k=1

Let it further be true for all j = 1, 2, veym — 1:

- Li = U L.
* k=1

Each of the partial graphs Lf, L3, ..., Ly, of the graph G(¢,, &, ..., Enrq) is
evidently a linear factor of the graph Gy, ¢, ..y Enay) and no two of them have
a common edge. Hence, even in the case of an odd s there follows from the validity

of the theorem for n < m its validity for n = m + 1. The proof of the theorem is
herewith accomplished.

Theorem 2. Let G(¢,, £,, ..., ¢,) be a lattice graph with an even number of vertices
and let L be any of its linear factors. For the number 0:(i) of edges from L, joining
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a vertex from the k-th layer with a vertex of the (k + 1)-th layer in the direction of the
axis X,, the following statement evidently holds:

k[1¢; = ew®) (mod 2).
j=1
e
Proof. Let us denote by the symbol #, the number of vertices in one of the layers
of the graph G(,, &, ..., &,) in the direction of the axis X;. We evidently have:

Let us denote by the symbol M,(i) the set of such edges from L that belong to the
k-th layer ‘of the graph G(¢,, &,, ..., &,) in the direction of the axis X; and by the
symbol p,(i) their number. Let us further denote by the symbol Ry(i) the set of such
edges from L that join the vertex from the k-th layer with a vertex of the (k + 1)-th
layer of the graph G(¢,, &, ..., £,) in the direction of the axis X;; ¢,(i) is their number.
Let us put further g, = 0 for k = 0 and for k = ¢;.

1t is evident that: each of the #, vertices of the k-th layer is incident at exactly one
edge of the linear factor L. The number of such these vertices incident at the edge
of L belonging to the k-th layer in the direction-of the axis X; is evidently 2u,(i). Any
of the remaining n; — 2u,(i) vertices is either incident at the edge belonging to
R, _ () or at the edge belonging to R,(i). Hence it is true forevery k = 1, 2, ..., &

Qrs 1) +2m0) + o) = mi.
Whence it follows (consider that g(i) = 0):
0,1() = n; (mod 2),
:(0) + @2() = n;(mod 2),
02(0) + @5() = 1, (mod 2),

P

0z, 2(0) + @g—1(@) = 1 (mod 2),
+0g-1() = n;(mod 2).

If n; = 0 (mod 2), then all numbers ¢,(i), 02(), ---, @z, 1(i) are even, if n, =1
(mod 2), then we have:

0:()) = 1 (mod 2);  @,(i) = 0(mod 2);
03() = 1(mod 2);  @u(i) = 0(mod 2);

generally: g,()) = k(mod 2) forall k = 1,2, ..., & — 1.
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Hence the number g,(i) is odd if and only if both the number & and the number n;
are odd; or: if the product :

is an odd number.
This proves the theorem.

2

Let L be any linear factor of the lattice graph G(¢,,¢,, ..., &) and let i be any
uza.cnﬁ,?oa {1,2, .., n}. We shall say that two different layers of this graph in
the .@m.o.na_o,z of the axis X, are connected by L if there exists at least one edge from L,
. .u..o.masm a yvertex of one F%a,n with a vertex of Ew. moooma. layer., " )

- Several ,inp.wwo?smﬁnoﬂmam and their generalizations lead to the concept of
the nonmnomnw of _mwom@ow:ﬂ.rm lattice graph by its linear mmc.ﬂoﬂ.m,“ these problems
_ will be dealt with subsequently. - L
.. Let us consider a chess-board (with its squares of the sidés of the length 1)
. arranged into m columns and n rows. In ‘the casé When mir is an even number; we
can .wwmmmon.ﬁwm whole chess-board info $mn 1 x 2 rectangles so that each rectangle
includes axmo.:m,ﬂéo m.mzmnnw of the nﬁmmw&om& and each square belongs to exactly
one rectangle. The question we shall try to answer is: what conditions must the
numbers m, n (giving the dimensions of the chess-board S) fulfil that there exist the
above dissection of the chess-board R into 1 x 2 rectangles in such a way that at
each dissection of the chess-board into two oblong chess-boards. S|, S, , there exists
at Jeast one such rectangle of the dissection R that one of its squares belongs to S,
the other to S,. Such a dissection- will .be called the significant dissection of the
chess-board into rectangles. | . . i

Before solving the above question, we shall express the mentioned problems
in the language of the theory of graphs. Let S be an m x n chess-board. Let us,
with respect to the chess-board S, construct the following graph Gj: the vertices
of the graph are formed by the squares of the chess-board S and two vertices in Gg
are joined by the edge if and only if the respective squares of the chess-board are
adjacent, i.e., if they have a common edge. Evidently, Gy is isomorphic with the
two-dimensional lattice graph G(m, n). : e g g

Lemma 2. Let S be an m x n chess-board and let R be such its dissection into
1 x 2 rectangles that any square in S belongs to exactly one rectangle of the dissection R.
Let G(m, n) be a lattice graph whose vertices are the squares oft the chess-board S,
and the vertices in G(m, 1) are Joined by an edge if and only if the respective squares
of the chess-board are adjacent. Let us assign to the dissection R the partial graph Ly
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of the graph G(m, n) in the following way: the edge from G(m, n), Jjoining the vertices a, b,
belongs to Ly if and only if the squares a, b belong to the same rectangle of the
dissection R. Then we have: Ly is the linear factor of the graph G(m, n) and it is true
that: the described correspondence of the linear Jactor of the graph G(m, n) with
the dissection of the chess-board into rectangles is a one-to-one map of the set of all
dissections of the chess-board S with the required properties on the set of all linear
Jactors of the graph G(m, n). X

The proof is-evident.

Lemma 3. Let S be an m x n chess-board. Let R be its dissection into 1 x 2
rectangles and let Ly be the corresponding linear factor of the lattice graph G(m, n).
The dissection 'R is the significant dissection of the chess‘board Sinto rectangles if
and only if every two adjacent layers of the lattice graph G(m, n) both in the

direction of the axis X, and the direction of the axis X, are connected by Lp.

Proof. The m@cmnom .0w the m X n chess-board S are Awﬁmumna ..mo as to form m
columns and n rows. It is possible to cut S into two oblong chess-boards S, S,
either;in such.a way that all squares of the first p columns (1 < p < m) are included

«in,§; and the other squares in .S, (i.e. we cut the chess*board vertically in two),

.or in such,a way that we include all mn;,m.nnm. of the mﬁﬁm"woém QM.Q.A&EM,

+and .En.o%obmacm_..mm_pb:m.n.Aﬁwrnm«obmﬁ..ng:v.u In the first case there correspond

to the nromm,.gomam Sy » 8, two.components of the graph that arises from the graph
G(m, n) .mm.na we remove all edges ._.om:m:maromzn:mﬁ of the p-th layer with the
vertex of the (p + 1)-th layer in the direction of the axis X’ 1- In the other case we
have the components of the graph which. arises from G(m, n) after the removal
of all edges joining the vertex of the g-th layer with the vertex of the (g + 1)th
layer in the direction of the axis X,. o _ . ’

Let us, once more, denote by the symbol g,(i) the number of edges from L,
joining the vertex of the k-th layer with the .‘_\n&owﬁwm the (k + .Cm&.mm&mn in the
direction of the axis X; (i = 1, 2). Evidently, the following is true: R is the singificant
dissection of the. chess-board into ‘rectangles. if .and only- if 0(1) +£ 0 for all
J=L2, ....m—1; 0. %0 for all. k = L2, ..,n— 1. ,H..rm aforesaid con-
ditions are, however, fulfilled if and only if every two adjacent layers of the graph

“G(myn) both in the direction-of ithe. axis- X, and_the direction of the axis X, , are

connected by L,. This proves the lemma.

Lemma 4. Let S bé an m X n chess-board, R its dissection into | x 2 rectangles
and let Ly be the linear factor of the lattice graph G(m, n), corresponding to the
dissection R. Let us denote by the symbol ¢, (i) the number of such edges from Ly that
connect the vertex of the k-th layer with the vertex of the (k + 1) —th layer of the
graph G(m, n) in the direction of the axis X; (i=1,2).
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We then have:

m-— 1 n—1
1 : :
»MM_ @»AC +»WL,_ P%Nv = prma, . 4)]
0:(1) = kn (mod 2) for all k=12 ..m— 1, . 2)
0(2) = km (mod 2) forall k=1,2..n~ 1. 3)

Proof. The validity of the statement (1) of the lemma is evident from the fact
that any edge from\Ly joins two vertices belonging to different layers either in the
direction of the axis X, 1> OT in the direction of the axis X 2- Statements (2), (3) are
a direct consequence of theorem 2. : S

hoazmuoiaaacoogmmﬁooaa mdoEEmz.mimomcﬂ&mmmoaomm2. the chess-board
into rectangles.(3) : e

Theorem 3. The significant dissection of them x n chess-board (mn > 2) exists
if and only if: (1) the chess-board has an even number of squares; () m 2 5; Gyn z5;
m =.n = 6 does not hold.

Proof. Let m = 2p and let R be a dissection of the chess-board into 1 x 2
rectangles. Let Ly be the linear corresponding: factor of the lattice graph G(m, n).
Let us again denote by the symbol 0,(1), resp. ¢(2) the number of edges from L,
Joining the vertex of the J-th layer with the vertex of the (j + 1)-th layer of the
graph G(m, n) in the direction of the axis X, or the axis X. 2. According to lemma 3,
R is a-significant dissection of the chess~board into fectangles if and only if:

o;(1) +0 forall j=1,2, ey — 1,
and

22 + 0 forall = 1,2, coson — 1.
L. Suppose that 7 is on odd number. According to lemma 4 we then have:

0;(1) = j (mod 2) , forall j=1,2 ., 2p -1,
2 =0 (mod 2) foral k=1,2..,n—1.

If Ris a m_.mE.mom.E dissection of the chessboard § into nooﬁnm_am. then
necessarily:

edl) =2 1 for all i=13 .,2p -1,
2,(1) =2 forall =24, .., 2p -2,
a,(2) =2 for all k=1,2..,n~1.

Auv S. W. Golomb obtained the same results in paper [4] in a different way.
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Hence, as regards the number of ‘edges from Ly (which is np), it is true (see
lemma 4):

pn H.MQNTHAC +HMW_@E.AC +MMM$ANV.

Therefore:
p2p+2p—1)+2n—1),
@-D¢-3z2

According to the supposition # is an odd number.

It is evident that n 1, n + 3. But then necessarily n > 5.

The term (n — 3) is always positive; hence it follows that P2—2>0 and
therefore 2p > 5. The conditions of theorem m 2 5and n > 5 with an odd n are
therefore necessary conditions.

IL. Suppose 7 to be an even number; n = 2gq.
According to lemma 4 we have:

2/(1) = 0 (mod 2) forall j=1,2,..,m~ 1,
2x(2) = 0 (mod 2) for all k=12 ..,n-1

From-the condition ¢ D+ 0; 0,(2) + 4 it follows:

g;(1) =2 forall j=1,2,..,m-1,
e.(2) =2 for all k=12 .,n-1,"

consequently: 2pg = 2(2p + 1) + 2(2q — 1), therefore: (p — 2) (g — 2) = 2. Where-
from it evidently follows that Pz3,g=3andsom=6,n26 1tis further evident

that we cannot have at the same time p = 3, g = 3. Each of the conditions 2),
(3), (4) of theorem 3 with even m, n is a necessary condition.

HI. We can easily see from fig. 1 that with an even m and an odd 7 the condition
m 2 6,n = 5is a sufficient condition. Fig. 1 illustrates schematically the construction
method of significant chess-board dissections with admissible’ dimensions into rec-
tangles. To set off the method of construction, the “horizontal” rectangles are
hatched. ) .

A similar case, where m and » are even numbers, is illustrated in fig. 2, here the
“vertical” rectanglés are hatched.

Note. The condition that mn > 2 in theorem 3 cannot be omitted, since the
chess-board I x 2canbe uniquely partitioned into 1 x 2 rectangles and this dissection
is significant,

3

The considerations discussed in part 2 can be generalized from two-dimensional
to n-dimensional chessboards. ,
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Here we shall have an n-dimensional 1 x T x ... x 1 cube and the v_&n of
adjacent 1 x 1 X ... X 1 cubes will correspond to the omwa of the linear factor.
Two such n-dimenional cubes are said to be adjacent if they differ ,“.:a rm«o
a common (n — 1)-dimensional cube whose edges are all of the length 1 as well.

Let us deduce the theorem about the éxistende of the linear factor, by which
any two adjacent layers in alattice graph of more than two dimensions are connected.

Theorem 4. In the three-dimensional lattice graph G(&,, &, ,&,) there exists a linear
Jactor by which any two &&.m%ﬁ layers are connected if and only if the number of
its vertices is even and at least two of the numbers ¢1, &2, &5 are greater than 2.

Proof. I Let & = ¢, = 2; {3 = n = 2. The number of vertices of the graph
G(2,2,n) is 4n and its arbitrary linear factor Z has exactly 2n-edges. Any layer
of the graph G(2, 2, n) has evidently an even number of vertices. According to
theorem 2 the number of edges from L, connecting any two layers, must be even.

Suppose that any two adjacent layers from G(2,2,n) are connected by L. Let
us denote by the symbol p, (i = 1, 2, 3) the number of such edges from L that are
parallel to the axis X,. As there exists both in the direction ‘of the axis X, and the
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axis X, one and only.one pair of adjacent layers, we have p; = 2; p, = 2. In the
direction of the axis X, there exist n. — 1 pairs of adjacent layers and each of them
is connected by. at least two edges from L parallel to the axis X,. Therefore:
P32 2(n — 1). Hence p; +.p, + p3 =2 + 2 + 2(n — 1). This is a contradiction,
since p; + p, + ps = 2n. To suppose the existence of the linear factor, by which
any two adjacent layers of the graph G(2, 2, n) are connected, leads to a contra-
diction. The condition that at least two numbers from &, &,, £, be greater than 2
is necessary.

IL. Let us now prove the following: if at least one number of the numbers &,
&5, &3 is even and at least two. of them are greater than 2, then there exists such
a linear factor of the graph G(¢,, &,, &;), by which any two of its adjacent layers
are connected.

A Leté =2,¢ =2p+1;¢ =29+ 1; p=1; q = L. Fig. 3 illustrates how
to find for such a case the linear factor with the required properties. This figure
shows the edges of such a :zown.mmoﬁoﬂ they-belong to the first layer of the graph
G(&,, &,, &) in the direction of .n,ﬂo axis X i and have a common projection with
the edges of the linear factor of the other layer in the direction of the axis X, 1o
The vertices of this layer, adjacent at such an edge of the linear factor that is parallel

pet p-2 paz . s
0-0 00 0—0 00 0—0 00 0=0 60 09 00
g=1 H-H cee MoootaM EXEEEE
oo 00 00 00 00 0-0 00 00 00 0
00 o0 00 00 0-0 00 00 0-0 00
seo X EEX) eeevsee
g=2 Mo.ow secese Mloooooo e @
Huaoi..ooooo " o0 eoo0n e
00 0-0 00 00 00 00 0—0 0-0 0-0
00 0-0 0-0 0—0 0-0 0~0 0-0
esseoe escevoe
R o.ooooAH
g=3 LN X Y sessense
ecseee essceoe
L oc-oo-\OH,
00 0-0 00 0-0 0-0 0—0 00

R
(e st
RS

Fig. 3.

with the axis X; are represented by full rings, while the other vertices are represented
by empty rings. The figure shows the cases where p = 1,2,3, 4 and g = 1,2, 3,4
in a way which facilitates the solution of any p, g.
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B. Let & =2;¢, = 2p; (p > 1); &, = g be any integer greater than 2. Fig. 4
shows, as in A, how to find the linear factor with the required properties.

C. Let all three numbers &, , &,, £, be greater than 2 and let ¢, be an even number,
&1 = 2p. The linear factor L*, by which any two -adjacent layers - of the graph

p=-2

3 oy
i gl

gad

: : : Fig. 4.

G(¢,,¢&,, &3) are connected, will be determined in the following way: We shall find
first the linear factor L, by which any two adjacent layers of the graph G(2, £,, £,) ()
are connected and let us denote by the symbol H, the set of such edges from L that
belong to the i-th (i =1, 2) layer of the graph G(2, &5, &3) in the direction of the
axis X;. By the symbol V, (or ¥;) there will be denoted the set of vertices of this
layer, incident (or not incident) at the edge from H,. The symbol H,, will denote
the set of edges from the last layer of the graph G(¢,,¢&,,&;) in the direction of the
axis X; which has a common projection with the set H, in the direction of the axis X, 1-
Let us form the sets Py, P,, vy Pay_y of the edges from G(¢,,¢,,&,) thus: the
edge joining the vertex x from the k-th layer with the vertex belonging to the
(k + 1)-th layer in the direction of the axis X, belongs to P, if and only if x has
a common projection in the direction of the axis X, with the vertex belonging to ¥
(j =0,1), where j = k (mod 2) and P, is formed only of such vertices. The set

H*=H UP,UP,U..UP,_, v H,,

(*) According to A and B such a linear factor evidently exists.
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is evidently the set of edges of a certain linear factor L* of the graph Gy, 85,85,
by which ‘any two- adjacent layers of the graph are oou.,.oo.noan This proves the
theorem. - IR ; -

Theorem 5. In every such an n-dimensional lattice graph G(¢ 15 &2,y -ony &), wherein
the number of vertices is even and n greater than 3, there exists a linear Sactor, by
which any two adjacent layers of the graph are connected, )

Proof. I. Let us describe first the construction of the linear factor, by which
any two adjacent layers of a four-dimensional lattice graph are connected.

A. Let {; =&, = {3 = £, = 2. Let the linear factor L of the graph G(2, 2, 2, 2)
consist of the edges 0000— 1000, 0111 —1111, 00010101, 1010—1110, 0100—0110,
1001—1011, 0010—0011, 1100—1101, whereby the symbol abcd—efgh denotes the
edge connecting the vertex (q, b, ¢, d) with the vertex (e, f; g, h) (fig. 5). Since in
the direction of any axis the graph G(2, 2, 2, 2) has exactly two layers and for any
ie{l,2,3,4} L contains two edges parallel with the axis X, it necessarily follows:
any two adjacent layers of the graph G(2, 2, 2, 2) are connected by L.

o110

1110
0010 ﬁ 0011

1010 - 1014
o100 o101

A
A7

1000 1001
Fig. 5.

o111

1111

/N
N/

1101

\/

v

CB.Let& =& =& = 2; ¢ = k 2 3. The way to find the linear factor of the
graph G(2, 2,2, k) by which any two adjacent layers of this graph are connected
is given schematically in fig. 6. o

"G Let §y=¢,=2; & =p23; 8 =qg=3. Let G; (or G,) be the first
(or the second) layer of the graph G(2, 2, p, g) in the direction of the axis X, . Both

these layers are isomorphic with the graph G(2, p, g). According to theorem 4 there
exists also a linear factor L; of the graph G, by which any two adjacenf layers of
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the graph G, are connected (i = 1, 2), whereby L, and L, have a common projection
in the direction of the axis X,. The union L, U L, is evidently the linear factor
of the graph G(2, 2, p, ¢). Let h; be such an edge from L,, by which the first layer

——

direction of the axis X, 4

SIS

first layer in the direction jeven . jodd
of the axis X,

J-th layer (1 < j < k) in the direction of the axis X,

&

k even k odd
k-th layer in the direction of the axis X, 4

Fig. 6.

of the graph G, is connected with the second layer in the direction of the axis X,
According to theorem 2 there exists an even number of such edges, since the number
of vertices of each of the aforesaid layers is 2p. Hence there exists, besides the edgeh,,
at least another edge from L,, by which the mentioned layers are connected. The
linear factor L, contains the edge hy, which has a common projection with the
edge hy in the direction of the axis X 1- The edges /1, h, belong to adjacent layers:
from the above it follows that they are two near edges. If, in the union Ly,
we replace the edges h,, h, by their “rungs®, we obtain the linear factor of the
graph G(2, 2, p, g), by which any two of its adjacent layers are connected.

116

U.ﬁﬁm_ﬂwwMNHthwmuHQWuwmanWu.hmﬁcmamsoﬁ by the
symbols Gy, G,, ..., G, the first, second, ..., r-th layer of the graph G(2, p, g, r
in the direction of the axis X,. For all i = 1,2, ..., r the graph G, is isomorphic
with the graph G(2, p, q) and ‘according to theorem 4 there exists a linear factor L,
of the graph G;, by which any two adjacent layers of the graph G; are connected.
The linear factors Ly, L,, ..., L, may, with regard to the aforesaid isomorphism,
be chosen in such a way that all have a common projection in the direction of the
axis X,. The union L, = L, UL, U ... U L, is evidently the linear factor &f the
graph G(2, p, q,r), by which every two adjacent layers are' connected with the
exception of the adjacent layers in the direction of the axis X,. The number of
vertices in any layer of the graph G; (i = 1,2, ..., r) in the direction of the axis
X, is evidently 2¢ and in the layer of graph G,in the direction of the axis X. 5 this
number is 2p. Hence according to theorem 2 it follows that the number of such
edges from L,, by which any two adjacent layers of the graph G, are connected in
the direction of both the axis X, and the axis X3, is even. Also, this number is
greater than zero. It is possible, therefore, to find the edge g; (or /,) from L, for
every ie mr 2, ..., r} suchthat the edges g;, g,, ..., g (or the edges &, h,, ..., h,)
have a common projection in the direction of the axis X, and that by the edge
& (or hy, the first and second layer of the graph G, in the direction of the axis
X, (or in the direction of the axis X,) are connected. Hereby g, (or k) is not the
only edge by which the above layers are connected. 1t is evident that the edges g;,
8i41 as well as the edges k;, A, ; are near. If, therefore, in the union L, we replace
all the pairs of the near edges g,,_1, g2« k = 1,2, ...; k < 1r) by their “rungs‘‘
and if we replace also all pairs of the near edges h,,, hy, ., (wheré k= 1,2, ...;
k < 4r) by their “rungs”, we shall then evidently have the linear factor of the
graph G(2, p, g, r), by which any two of its adjacent layers are connected. (All
aforesaid “rungs® are namely parallel with the axis X, and the pairs of the adjacent
layers in the direction of the axis X, are connected by them.)

E Leté, =2m>2;¢,=p23;E =923 = r = 3. If we removed from
the graph G(2m, p, g, r) such edges parallel with X, by which the vertex from the
2k-th layer is joined with the vertex of the (2k + 1)-th layer in the direction of
the axis X; (k = 1,2, ..,m — 1), the graph G(2m, p, g, F) would split into m
components, each of which would be isomorphic with the-graph G(2, p, ¢, r). Let
us denote by the symbol G; such of these components that includes the (2; — 1)-th
and the 2i-th layer of the graph G(2m, p, ¢, r) in the direction of the axis X,.
According to D there exists in the graph G, a linear factor L;, by which any two
adjacent layers of the graph G; are connected. With respect to the aforesaid
isomorphism and with regard to D, we can find the linear factors L,,L,, ..., L,
so that we have: if the edge k from the first layer in the direction of the axis X,
belongs to L,, then all edges having a common projection with 4 in the direction
of the axis X, belong to Ly =L, uL, U ... uL,. Let g, be an arbitrary edge
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from Lo, belonging to the k-th layer in the direction of the axis X, (we shall denote
this layer by the symbol F,) and parallel with the axis X, and by which, consequently,
the two aforesaid 'adjacent layers of the graph F, are connected in the direction of
‘the axis X,. Besides the edge g, there exists according to theorem 2 at least‘another
edge from F, belonging to L, by which the two mentionéd layers of the graph F,
are connected in the direction of the axis X, Then, of course, if we replace in L,
the near edges g5, g3 by their “rungs®, further the near edges g, g5 by their “rungs®,
etc. ..., the near edges g,,, ,; Zom_,by their “rungs®, we obtain thus the linear
mmoﬁo_. om the mz%r QANE p, q, J 5 iEor any two of :m m&man aamom are
oonbmoaom
Since at least one of the numbers mH NN muv &, must be even and all ‘are greater
~than I; ‘and, since by the change of the order by which we denote the axes of the
coordinates :o:::m is being Eom_mma m: cases mon n= A in the cases A, B, C, D, E
are Eo_:aom . ,

1I. Hoﬂ us suppose that the theorem holds for m: integers n ?5:5« the condition
4 < n £ t(where tis a certain positive integer) and let' us prove that it then holds
forn =1+ 1 as well.

Let n = ¢ + 1 and let G(¢,,¢,, -, &) be any n-dimensional lattice graph with .

an even nhumber of vertices. Taking into account the isomorphism, we can assume
without loss of generality that the number £, is ‘an even number £ = 2m.

Each of the £, ='s layers of the graph G(&;,¢&,, ..., &) in the direction of the
axis X, (let us denote them by the symbols Gy, G, ..., G;; the k-th E\on will be
denoted by the symbol G}) is isomorphic with the graph G(¢,, &,, ... ¢u—1) having
an even number of vertices and being at least four-dimensional. Then there exists,
according to the assumption; such a linear factor Z; in G,, by which any- two
adjacent layers of the graph G, (k = 1,2, ..., 5) are connected. The linear factors
L, L,, ..., L can evidently be such that they have a common projection in the
direction of the axis X,.

Since £, = 2m, it necessarily follows that: any layer of the graph G, in the
direction of both the axis X, and X; has an even number of vertices. According
to theorem 2 it then follows that the number of edges from'L,, by which the
first and second layer of the graph G, are connected in the direction of the axis X 2
(as well as in the direction of the axis X;)is even and > 0. Let us denote by the
symbol g, (or 4,) one of such edges parallel to the axis X, (or X3).'A consideration,
similar to the one of part I. D will convince us that if in then union L, U L, U ...u L,
we replace the near edges g,, g, by their “rungs, further the edges h,, hy by their
“rungs, next the edges g5, g, by their “rungs®, etc., we shall finally obtain the
linear factor of the graph G(¢,,¢,, ...,¢&,), by which any two adjacent layers of
this graph are connected. Consequently, if the theorem holds for 4 < n < ¢, it
holds for n =t + 1 as well; because it holds for n = 4, it holds also for all
n Z 4. This proves the theorem.
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In this part we shall especially consider near edges in linear factors and a owzmmn
transformation of such a linear factor of the lattice graph that includes a pair of
near edges.

Lemma 5. Let L be any such linear factor of the lattice graph G(¢,, &, ..., &),
containing two near edges.g, h. Let L' be the partial graph of the graph G(€,,&,, ...,E,)
that arises from L, .if we replace.the edges g, h.by their ““rungs®, g', . Hence: L' is
the linear factor of the graph G(&,,&,, ..., £,).

The proof is evident. v

If the linear factor L’ of the 558 mﬂ%w arises ?oB mﬁ linear ?Qo_. h Om Q:m
graph in such a way that we replace certain two near edges g, h by their “rungs* w K,
we say Ema h\ m:mom bya a-:muwmoa_mco: Om L on En oamwm wv h. S

Lemma 6. Let the linear factor L' of a’certain lattice graph arisé by the x-trans-
Jormation of the linear factor L of the graph G on its edges g, h, and let g', b’ be the
“rungs‘ of the edges g, h. In that case the following is true: §m linear \n&en h is
obtained by the x-transformation c\ h, on QR m&wm.q g, Nm pEE

A&o unoow is oSmQ:

Lemma 7. Any linear factor a\ a 3@-&3«55:& lattice NENS 85&5. ‘at Nma.a.
one hﬁa c\ near mn.w%. a - .

f

Y

Proof. If in the graph G(r, n) there exists 4 linear factor'L not including any
pair of near edges, then there belongs to L from each of the (m —='1) (' = 1)
quadrilaterals of the graph G(m, n) at most one side. Let s quadrilaterals’ contain
a boundary edge (i.c., an edge from the first or last layer in the direction of some
axis). belonging to L. Let us count the number .of edges from L considering the
individual quadrilaterals. Since all edges from L with the exception of the S boundary
edges will be included in exactly two quadrilaterals, we count these edges with
the coefficient 4. Since the total number of edges from L is $mn, we obtain:

1

s + W,s:,l D — O —sl=4imn,.

i.e. s+ (m—1)(@m— 1) = mn and since evidently (m — 1) + (n — 1) = s then
a fortiori (m — 1) + (n — 1) + (m — 1) (n — 1) = mn whence after adjustment we
have —1 = 0, which is a contradiction. This proves the lemma.

Theorem 6. Let G(,, mwv be any .two-dimensional lattice graph and let L, L’ @m.
any two its linear factors, then L' is obtained. from L by the finite number of
K-transformations.
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Proof. Since the product &, &, is an even number, we may suppose without
loss of generality £; to be.an even number. Let us put, for the sake of simplification
of notation &; = 2m; ¢, = n. —USB _nEBm 6 it follows Emﬁ Ho _prove the validity
of the theorem, it is sufficient to prove that for any linear factor L of the graph
G(2m, n) there exists a finite sequence L,, L,, ..., L, of linear factors of the graph
G(2m, n) so that L, = L and that L, is a _Enmn mmn8~ containing such and only
such edges that uoE the, vertex (2j — 1, 5 with the vertex (2j, k), where j=

=12 ..mk=12,..n; mca where the mo=o€5m roEm Ly, is ocSEom by
a-qmbmmoﬂmmcoam Om En _Enmn factor L;on certain of its. :omn edges.

We shall prove the statément by induction with respect to n (with m mxn& Before
carrying on our-discussion, we shall prove the validity of the statement for all mﬂmurm

G(2m,2). .. . .,

I. Suppose that any linear fattor of the' graph QANE n) ?&Q.o m is a positive
integer; n > 1; n < p and where p is an integer >1) can by a repeated r-transfor-
mation be oo=<on8m into a linear factor, whose'edges are'all parallel sﬁr the axis X .
Let L be any runwn factor of the graph GQ2m,p + 1). ~ - :

Denote by Ea.wﬁﬁ@& W(L) the set of the <2.:owm of the (p + 1)-th layer of the
graph QQS p + 1) in the direction’ of ‘the' axis X, that are ‘incident at an edge
from L parallel with the axis X,. If W(L) were a void set, it would not be necessary
to prove anything, since in that case all edges from L, incident at the vertex of the
(p + 1-th'layer of the graph G(2m, p'+ 1) in'the-direction 'of the axis X, are parallel
with the axis X, and the edges from L, incident at other vertices, form the linear
factor L, of the graph G(2m, p), which, according to the supposition, can be converted

by repeated a-ﬁnunmmoHBmsosm info the :uom_, mmoﬁo_. of Hrn mnmur Q@:ﬁ p) containing’

.

only edges va:& with X, .”
Let (L) be a nomempty set, W(L) = {(@,p + 1); (70 + 1, @+ D}
,EHQSQVom:mi:oRSAaNA: <a.

> I BEE»E Emﬁ by a-ﬁnmdmmop,am:osm h can be oom<on8a 58 mcor a :nomn
factor L*, for which it is true: W(L*) does not contain any of the vertices (1, p + 1),
Qp+1),..,(, P + 1). Let us prove the validity of this mmmo:_on. Let us form
the sequence V = {v,,v,,....,0,} of the <o58w from QANE p + 1) such that:

=(@g+k—-Lp—-—k+2)foral k=] , t where t is chosen so as to be
the greatest integer fulfilling the wo:oinm two oou&mosm“

NAN§+~|§, t<p+ 2.

Hrm moﬂ_oi_nm mﬁmﬂoEnnﬂ roEm E the _sequence V 508 ox_ma at least one such
vertex, from which we cannot E.Onan& ‘downward &ocm the edge from L. Let us
suppose, conversely, that from each vertex from ¥ we can proceed downward along
the edge from L (i.e., to the vertex, belonging to the lower layer of the graph in the
direc tion of the axis X,). Then evidently the vertex from the first layer in the
direction of the axis X, does not belong to V¥ and the vertex v, belongs to the last
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(2m-th) layer of the graph G(2m, p + 1) in the direction of the axis X, (t = 2m +
+1—a)

Let f; be an edge from L incident at the vertex v;. It follows from the above
supposition that the vertex w, = (a; + 1, p + 1) is joined by an edge from L with
the vertex (a;, + 2, p + 1), since it cannot be joined by such an edge either with the
vertex v, (incident at the edge f; € L) or the vertex v,, incident at the edge f, € L.
But in such a case the vertex w, = (a; + 2,p)
is joined by an edge from L with the vertex

(a, + 3, p) (there is no other possibility — § v e e .
5 ¥,
fig. 7). srw o9 Bty w6 mas
r . =
; &3 -3
v v ow Nvm Q.I* o PR S M o—o 2 .t
H v, w, M %2 Y s
P I, & mov s « s« 0o O——0 = -
M ¥ H e Yy
cee o S e s .. ° o 6 " ae w
’
<+ s o o M Q.« .. e ° ° 2 M M.N A
#E s o o ° H PRI - o ° o o P

" Fig. 7. Fig. 8.

Carrying on the above discussion, we find that for any k = 1,2, ..., — 2 it is
true: the vertex w; = (a, + k,p — k + 2) is joined by an edge from L with the
vertex (a; +k+ 1,p — k + 2). But then the vertex w,_, = 2m,p —t + 3)
cannot be incident at any edge from L (fig. 8).

The supposition that from each vertex of the sequence ¥ we reach along the edge
from L the lower layer of the graph G(2/n, p + 1) in the direction of the axis X,
leads to a contradiction.

Let v, be the first such vertex of the sequence ¥ from which we cannot reach along
the edge from L the lower layer of the graph in the direction of the axis X,. It is
evident that for each linear factor F of the graph G(2m1, p + 1), for which W(F) + (J,
the number ¢ is uniquely determined; let us monoﬁo this number by the symbol 23
if W(F) &+ @ and let us put p(F) = 0, if W(F) =

In this case it is evidently true that (L) = ¢ > ~ and that: from the vertex v, we
reach along the edge from L either the higher layers in the direction of the axis X,
(the first type of linear factor), or the higher layer in the direction of the axis X, (the
second type). A consideration similar to the one above will corivince us easily that
the position of the edges from L, incident at the vertices Uy, Uy, ..., U, and the vertices

='(a; + k,p — k + 2), in case of the first (or the second) type of the linear
factor of the graph G(2m, p + 1) is that given in fig. 9a (or fig. 9b).
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Whether we have the first or the second type of the linear factor, it is always true
that: for an edge from L (let us denote it by &), incident at the vertex v, there exists
such an edge g € L that is near to the edge 4. Besides, we have for the second type
g = /.. Let L°® be a linear factor of the graph G(2m, p + 1), which arises by an

’ v P . " PR . ;
c-3 Yo_a 3%
“ s a OO0 o O o s e e GQP 0 “em s
%2 %, H %2 ¥,
[P O——0 O « o VoW OO ¢ 4 o
!.ni n\nl‘ J.L !\mL
s s e O O——0 o s s ! s e 0O PR
e ss O o OO0 o » = v s e O o PR
- - - - . L] L) th-
a. b

Fig. 9.

x-transformation of the linear factor L on the edges g, h. The following is true:
if L is the first type of the linear factor, then L° is the second type and (L) = Xhov”
if L is the second type of the linear factor, then L° is the first type and we rmﬁx.
L) = (L) — 1 (fig. 9a,b). Whence it follows: by x-transformations on near
edges from which one is always incident at the vertex UL,y We can change the type
of the linear factor and successively reduce the value of the function (L) so that we
finally have a linear factor L*, for which is it true that: an edge from L*, incident
.at the vertex v, is incident at the vertex (a, + 1, p + 1) (ie.; horizontal — fig. 10).
But then the set W(L*) evidently does not contain any of .the vertices (k, p + 1)
where k = 1,2, ..., a,, which proves the validity of statement A. ’
B. I maintain: by x-transformations the linear factor L can be converted into.such
a linear factor L**, for which it is true: W(L**) is a void set. Let us prove it! Let .,
be any linear factor of the graph G(2m, p + 1). Let us use, for the sake of &vamnmm
tion, the symbol. b; to denote the vertex (i, p + 1) and let us denote by B(L,) such
a smallest index j from {1, 2, ..., 2m} for which it is true: ; belongs to W(L). Accord-
ing to point A any linear factor I = L(0), for which W(L(0)) # @, can by x-transfor-
mations be converted into the linear factor L(1) in such a way that we either have
W(L(1)) = @ or BILO)] < BLL(L)]. Generally: if for. the linear factor L(k) it is true
that W(L(k)) # @, we can convert this linear factor by k-transformations into the
linear factor L{k + 1) so that we either have W(L(k + 1)) = @, or that it is true;
BIL(k)] < BIL(k + 1)]. Hence there always exists a finite sequence of the linear
factors L(0), L(1), ..., L(r) so that L(i + 1) arises by x-transformations from L@
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and it is true: SL(0)] < BIL(1)] < ... < BIL(r — D)]; W(L(r)) = 0. But then L** = L,
is the required linear factor. This proves the validity of the assertion B.

C. From the validity .of the assertion B there follows — as mentioned at the
beginning — that: if our theorem is valid for all lattice graphs G(2m, n) with a given
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, R tHE
U..meu,“““” ‘
Mgl Gl ..
" Fig. 10.

m > 0 and any n > 1; n < p, then the theorem holds for the graph GQm, p + 1)
as well. To complete the proof of the theorem, it is sufficient to prove merely that
the theorem holds for every graph G(2m, 2), where m is any positive integer.

IL. Let L be an arbitrary linear factor of the graph G(2m, 2), where m is any
integer >0. According to theorem 2 the number of edges from L that are joining
the vertex from the k-th layer (k = 1,2, ..., 2m — 1) of the graph G(2m, 2) in the
direction of the axis X, with the vertex of the (k + I)-th layer of this graph in the
direction of the axis X, is an even number. Hence the vertices of the considered two
layers are either not joined by any edge from, or are joined by exactly two edges
from L. Then necessarily: for each such edge from L that is parallel with the axis X,
and belongs to the first layer in the direction of the axis X, there exists a near edge
in the second layer of the graph G(2m, 2) in the direction of the axis X; ». Whence it
immediately follows that by x-transformation on each of such pairs of near edges of
the linear factor L that are parallel with the axis X7, we can obtain the linear factor E,
all edges of which are paralle] with the axis X,. Let us denote by the symbol e, the
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edge from E that connects the vertices ke, 1), (k,2); k = 1,2, ..., 2m. If we perform
the x-transformation first on the edges e, , e, , then on the edges e;, e,,and soon, ...,
on the edges e,,, _,, €,,., we obtain the linear factor L,, all edges of which are parallel
with the axis X; . The theorem then holds for all graphs
G(2m, 2), where m is a positive integer.

Then, according to part I the theorem holds for
all G(2m, n), where m, n are integers, m > 0, n > 1.
This was to be proved.

I must make clear that the theorem analogous to
theorem 6 for n-dimensional lattice graphs does not
hold any more for n = 3. Thus for instance in the
graph G(3, 3, 2) there exists a linear factor L that
does not contain any pair of near edges (fig. 11; the
edges from L are set off by bold lines).

The graph of the four-dimensional cube G(2, 2, 2, 2)
may even be decomposed into four linear factors L, ,
L,, Ly, L, so that there does not exist in any of these
four linear factors a pair of near edges. Let us demonstrate at least one example of
such a decomposition (fig. 12):

Theorem 7. Let p be any positive integer. The graph of the 4p-dimensional cube can
be decomposed into 4p linear factors so that not one of the linear factors of this
decomposition contains a pair of near edges. If there exists the decomposition of the
graph of an n-dimensional cube (n > 1) into n-linear factors, not one of which contains
the pair of near edges, then there exists also the decomposition of the graph of the
(n + 4p)-dimensional cube into (n + 4p) linear factors, not one of which contains two
near edges.(*)

Edges from the linear factor

L L, s N

join these pairs of vertices

0000,1000 |  0000,0100 0000,0010 0000,0001
0100,0110 1000,1001 1000,1100 1000,1010
" 0010,0011 0010,1010 0100,0101 0100,1100
0001,0101 0001,0011 0001,1001 .|~ 0010,0110
1110,1010 - 1110,1100 ~ - 1110,0110 1101,1001
1101,1100 1101,0101 10111010 1011,0011
1011,1001 0111,0110 0111,0011 -0111,0101
1111,0111 1111,1011 1111,1101 1111,1110

Auv When speaking of ﬁ.sn graph of an n-dimensional cube we mean the graph G(2,2,...,2)
{n twos). )
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Proof. Let C(x) be the graph of an n-dimensional cube and let there exist .m:o:
its aaoo.avo&moz R(n) = {L(n), L,(n), :;.h..?& into linear factors that no _Emmn
factor of this decomposition contains a pair of near edges. Let R(4) = {L,(4),

0110 ) o111

Ly

Fig. 12..

hwﬁv, Li(4), h%avw ‘be the manoim@wwwo% om. Eo mnmwrv .om” the wozn-awﬂmcmmoanoch
C(4) = G(2,2,2,2) described in fable 1 and illustrated in fig. 12. Let ¥ be the set
of all vertices of the n + 4-dimensional oﬂdw QA=+ b m,:ﬁ. .._n:\ = {Voo, No_ 5 «\_ow
ﬁ\bw be the decomposition of the set V into .Qmmmmmwa@n:ma in Eov .».oﬁv.gmm Emum :
the vertex QT Xgy ooos Xppa) = x coﬁoﬁmm, to E.o o_w.wm SL.m Vi=0, T i=0, )
if and only if it is true: ’

g . o i N . - 4 . - ) B g % E
o Y xy=i(mod2); | Y Xpyn = j(mod 2).
. k=1 . k=1 , .
Let H be the set of all edges from C(n + 4) and _an.m.ﬂ. mm.o* » Hyws m*ow H,.}
be its decomposition thus defined: the edge A from-H, joining the vertex x with the
vertex y belongs (fig. 13) to the class< .

H,, ifand onlyif {x,y} N Voo + ¥; {(x.y} Vo +6,
H,. ifand onlyif {x,y} " Vio *+ @; {x, 3} n Vi * 0,
H,,if and QE%R.@L\%J Voo @; {x, 9} Vo £,
Hy, Rmuaonqm:wiw AV =0; {(x, 9}V 0.

125



Itis n<Eo=~I that H is a partition, ie., any edge from C(n + 4) belongs to exactly

one set from H and. each set from the sets Hoy, Hyw, Hyo, Hy, is a non-empty set

] h\mﬁ us denote \Eo already defined linear factors of the graph C(n) (or C(4))in.the
mMBMM\n__N\m MMMWV. NHJAMWAMVNT 1(n), where Ly(n) = L,(n) and L4 = L;_,(4) and where
Let R* = (LI, L3, . LY.} be the” decomposition’ of the graph C(n + 4) into
linear factors, defined in the following way: )
1. the edge from H,, joining the vertex x = 0:, x? vy X, b.m Voo with the
vertex y = (¥4, ¥, w5 Vn +4) € Yy, belongs to hu +;if and only if .mﬂ\a edge from C(4)
H, joining the VEIEX X = (Xpy 15 Xyy2, Xuy3s Xnys) With
the: vertex y = (Vs 15 Vni2s Yuy3s Vaya) belongs to
LD ] . oy
y . " 2. the edge from ~Ni,oomwoombm the vertex x with
o% 1%  the vertex y belongs to Ly, if-and ‘only if the edge
from C(4) joining the vertex x with the vertex y
belongs'to L}{4): .
Frea ] u the edge from H,, joining the vertex x with the
. vertex y belongs to L} if and only if the edge from
Fig. 13. m.@v joining the vertex x = (X1, X3, ..., X,) with the
vertex y = (yy, y,, --., ¥,) belongs to L .(n).
4. .Eo edge from H,, joining the vertex x ,SNE ?%@onmx wmwn_ommmﬁﬂw L} if and
only if the edge from C(n) joining the vertex x with the vertex y belongs mo Li(n)
From the above description it is evident that R* is a decomposition into :mmmn.
factors mnn.m that no linear factor from R* contains a pair of near edges.
“Hence, :if .by ‘the required way the graph C(n) can be decomposed into linear
wmnnoa, the graph: C(n + 4) can be decomposed in this way as ..in:. irnroa Eo_.m
Emﬁu.nw follows the validity of both statements of the theorem. o
I sz_u to make clear that the requirement expressed in theorem 7 s&m ‘—dmvooﬂ to
the E.ﬁmn factors of the decomposition, i.e. the requirement that not one of them
oonﬁ.:n a pair of near edges, can be made more nonmcmom.ocm and we can ﬁo%&ﬁo
Hrww it be true: each of the four edges of any quadrilateral of the graph belongs to
a different linear factor of the decomposition (we have omitted in our considerations
thecasen = 1, it being a trivial case). Hence it is clear that the required decomposition
om.unoﬂ exist for n = N,u n'= 3. We can prove that such a decomposition does not
exist mo« n = 5 either (I' did not succeed in symplifying the rather complicated proof
I established). The problem of the existence of these decompositions for such u >5
that are not divisible by 4 remains to be solved. - ,.. :

s’

u.n sz. part we .&5: deal with certain properties of the sets of edges in infinite
n-dimensional lattice graphs and we shall deduce, with. respect to them, a theorem
> 5 td
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from G[n]-belongs to ¥[n] if and only if

whose deductions have an importance also when we'consider linear factors in finite

lattice graphs. When speaking of an -n-dimensional infinite lattice graph we

think — as in paper [5] — of a graph, whose vetices are all the points from E,, each
coordinate of which is an integer; any two vertices in the graph are joined by an
edge if and only if their distance is 1. We use the symbol G{#] to denote it. - -

Let us define the'set of ¥[r] vertices from G{a] thus: the vertex x = (x;, X5, ..., X,)

x; = 0 (mod 2).

M=

[}

i=1

Lemma 8. Any edge from G{n] joins a vertex from Y[n] with a vertex not belonging
to Y[n). .

The proof is evident (the statement in the lemma follows directly from the
definition of the graph G[n]): : § o : :

The ‘partial graph F of the graph G{n] will besaid to be a- A-graph in Gln], if it
is true: any vertex from G[r] is incident at most with one edge from F. We evidently
have: any linear factor (hence also the partial graph of the linear factor) of the graph
Gln] is its A-graph. : o

Let g, & be any two edges from G[n] and let the edge g connect the vertices v, w;
the edge £ the vertices x,.y. The'edges g, h will be said to be adjacent if g + & and
if it is true that {o, w} n {x,y} = @ and almost adjacent if g + k; g, h are not
adjacent edges and if in the graph G[r] there exists such an edge f that both (£, g)
and (f; 4) are pairs of adjacent edges.

Lemma 9. Let g, h be any two almost adjacent edges from G[n] and let v = (v,
Uy, -oes Ug), OT W = (Wi, Wy, ..., ,) be the vertex from Y[n] at which the edge g, or the
edge h is incident. In such a case we have: : |

Yloi—wl=2

Proof. Let v (or w) be the vertex from G[n] not belonging to Y[n], at which the
edge g (or edge k) is incident — see lemma 8 — and let f be the edge joining the
vertex from {v, v} with the vertex from {w, w}. We may suppose without loss of
generality that the edge f joins the vertex v with the vertex w. Taking the definition
of the graph Gfn] as a starting point, we have, after a simple consideration:

n
o, — wil = 1; MU_«.:IE_. =L
i=1 ) i=1

M:

Whence it follows that there exist such numbers r, s € {1, 2, ..., n} that:

_ G..|S\1_

_@ninxym_”w“ <.<_.

w foralli+r; ie{l,2, .., n},
w;foralli+s;ie{l,2, .., n}

i

L, o
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>owon&=m to our assumption v, w are two different vertices. Whence it follo
that: if r = s, then necessarily | v, — %ﬁ_ =2;v;=w;foralli % r;ie {1,2 Sm.
and if r % s, then it is true: | v, — wl=1; v, —~w|=1; c._..Hgsr momm~.~.~...m~m,
.wu ..., n} not belonging to {r, s}. The validity of the lemma from Eo. the aforesaid
is evident, " Horesnd

Fam Nu be any A-graph in Gln]. We say that F can be coloured by p colours (is
a ﬁ.om::a integer), if to each edge from F a number from {1,2, .., P} cen be assigned
(this number will be called the colour of the edge) so that any two almost adjacent
edges will have a different colour.()

Mrmaonnn_ 8. Every \Fﬁ&& in the graph Gln] can be coloured by p colours, where
P = an. u

Proof. Let F be any A-graph in the graph Gln]. Let M = (M, M,, ..., M, }
be the partition of the set Y[n] into classes thus defined: the vertex x — (X1 x5, ... k“v
from Y[r] belongs to the class M, (i = 1, 2, ..., n) of the partition M if and only if’:

1
ux) = 5 X1 + 3%, + ... + (21 — 1) x,] = i(mod 2n).

A. T assert: if it is true for the vertices x, y from ¥[n] that:

Ma

lx; —»il =2, _ *

]

i=1

then the vertices x, y belong to different classes of the partition M. Let us prove it!

Let (*) hold for the vertices x, y € Y[n). It is evident that only the following two cases
are possible:

Case I. There exists such a number ge{l,2, ...,n} that {x—»,] =2 and
x; = y; holds for all i + ¢; ie{1,2, ..., n}. !

Case II. There exist numbers r < s belonging to {1,2, .., n}sothat| x, — b =1;
| xs =¥l =1; x; =y, holds for all i & r; i & s. ’ '

In the first case we have:

1
HO) =1+ 3+ o+ Qn = 1) y] =

1
= WHHQE =2t x+30+ .+ @n—1)x]
or uy) = px) £ 29 - 1)

and since the number 2¢ — 1 cannot be the integer multiple of the number 27 it
follows: the vertices x, y belong to different classes of the partition M.

m . %
(®) 1t follows directly from the definition of the A-graph that F cannot contain two adjacent
edges,
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In the second case we have:

HO) = H0) + 5 [EQr — 1) £ (25 = 1] =

= p(x) + HAxI.wI .ITA IWV = p(x) + .

The term in brackets (denoted by the symbol v) cannot be equal to zero since,
according to the assumption, r < s. Since r < s < n, it is necessarily true that
v < 2n. Hence v is not the integer multiple of the number 2n and so the vertices X, y
must belong to different classes of the partition M. This proves the validity of our
assertion.

Let & be any edge from F and let y(4) be such of the vertices incident at the edge h
that belongs to ¥[r] (see lemma 8). The edges from F shall be coloured in the following
way: the edge 4 has the colour i (i = 1, 2, ..., 2n) if and only if the vertex y(k) belongs
to the class M; of the partition M.

B. I assert: With the above colouring of edges from F any two almost adjacent
edges from F are coloured differently. Let us prove the validity of the assertion!
Let g, & be any two almost adjacent adges from F. Let v = ¥(g), or w = y(h) be the
vertex frem Y[n], at which the edge g, or the edge k, is incident. According to lemma 9
it is true: ’ - ’

™=

fo;—wi =2
i=1

I

whence it follows according to A that: the vertices v = y(g); w = y(h) belong to
different classes of the decomposition M. Hence it bocomes evident that with the
mentioned colouring of the edges from F, the edges g,  are differently coloured.
This proves the theorem.

A direct consequence of theorem 8 is the following theorem:

Theorem 9. Each linear factor of the lattice graph G(&,, &,, ..., &) can be coloured
by p colours, where p=<2n. -

Proof. Any linear factor of the lattice graph G(, , &, ..., £,) is evidently a A-graph
in the graph G[n]. According to theorem 8, it can be coloured by p < 2n colours.

Let us turn once more to the dissections of the two-dimensional chess-board into
1 x 2 quadrilaterals, or to the dissections of the n-dimensional chess-board into pairs
of adjacent n-dimensional cubes with edges of the length 1. Two n-dimensional
cubes with edges of the length 1, i.e., two cubes of the n-dimensional chess-board,
are adjacent if they are different and if their intersection in an (n — 1)-dimensional
cube with edges of the length 1.

Let S be an n-dimensional ¢; X &, x ... x £, chess-board and let D=
= {D, D,, ..., D,;} be such a.dissection of the chess-board S into pairs of adjacent
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#-dimensional cubes with edges of the length 1 that we have: each cube of the
chess-board S belongs to exactly one pair from D. Let L be the linear factor of the
lattice graph G(¢,, &;, ..., ¢.) corresponding to the dissection D. Let further D; + D ;

be any two pairs from D and et hy, h; be their corresponding edges from L.

Lemma 10. The cube of the chess-board S belonging to D; and adjacent at a certain
cube from D; exists if and only if the edges i, k; are almost adjacent..

"The proof follows directly from the definition of the almost adjacent edges and
. from the correspondence between an n-dimensional
- g . . - lattice graph and an n-dimensional chess-board.
From lemma 10 it immediately follows: The problem
to colour the cubes of an s-dimensional chess-board
with the given dissection D with p colours (so that
both cubes belonging to the pair have the same
colour and that each two pairs from m“ the inter-
section of which is at least a (n-~ 1)-dimensional
.cube with edges of the length 1, have a different
colour) is therefore. equivalent to the problem how
o . to colour the edges of the linear factor L with p colours
. (so that each two almost adjacent edges have a different colour). The following
theorem then holds, which may be called the small four-colour theorem.

Fig. 14.

Theorem 10. Let S be any two-dimensional chess-board and let D be any its dissection
into 1 x 2 rectangles. The rectangles from D can always be coloured with the help
of four colours so that any two rectangles, whose common boundary is formed by
a line-segment of the length of at least 1, have a different colour.

Proof. The theorem follows directly from theorem 9 for the special case n = 2.

If the chess-board S from theorem 10 is a 2m x n chess-board where m = 2, then
there exists such its dissection into 1 x 2 rectangles that we need for their colouring
with the required properties four colours. Fig. 14 shows an example of such
a dissection of a 4 x 3 chess-board (an elementary consideration will convince the
reader that three colours carinot suffice in this case).

Hence it is evident that for the case 1 = 2 the necessary number of 4 colours
generally cannot be reduced. It is not known to the author whether the number 25
of colours, sufficient according to theorem 9, can be reduced. The author is not
acquainted even with such a dissection of a three-dimensional chess-board § into
1 x 1 x 2 rectangular parallelepipeds that, when coloured, requires 6 colours. It
<can easily be proved that: if we need for the colouring of the m x nx p chess-board S
with the dissection D 6 colours, all the three numbers m, n, p must be greater than 2.
The reader can see at once that to colour the linear factor of the graph G(2, 3, 3)
given in fig. 11, he must have 5 colours. Whence it follows: if the number of necessary
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colours in colouring a three-dimensional chess-board can be reduced, this lower
limit will generally not be less than 5. Even in this dissection of the 2 x 3 x3
chess-board into 1 x 1 x 2 rectanglés that corresponds to the linear factor from fig.
12, ,..zn. n.nacwna moH,E.o,mo_ocHEm of the considered chess-board 5 colours.
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Slovenskej akadémie <..~.a&
v Bratislave

O IMHEMHBIX ®AKTOPAX B PEMETYATBIX T'PAGAX
Anton Kogur
Pesiome

Hycrs &4, §,, .. ., &, — uensie ywicna >1, n - yeloe HONOKUTEALHOE YHCHO. ITox pemeT4ATHIM
rpagom G(&y, &,, ..., §,) MEL GyieM TOHEMATE Tpad, B KOTOPOM: (a) on.%ooqwo BEPILAH omnwuc.
BAHO MHOXCCTBOM V/ 'TO¥EK SBKIMAOBA NpOCTpaHcTBa E,, OpeNe/eHHbIM CleayiommM oGpasoM:
TOYKA X C XOOPIMHATAMMK Xy, X3, ..., X, HPMHAMIKUT V TOrNA M TOJLKO TOTNA, KOIka Ed.n BCEX
i=1,2, ..., n BHIIONHAETCA: X; €CTh LENOE NOIOKHUTEIBHOE THCTO = &;; (6) nee BepurAHEI wu |4
CoenMHEHEI peGpoM (TpuIemM CIMHCTBEHHLIM PEOPOM) TOTHA I TONBKO TOTAA, KOTAA MX nmoﬁ.onmﬂw
pasHO 1. Ocy xoopawHAT B E, MbI Gynem 0Go3Hauath yepes X, , X, 55 -+, X, Ecin pebpo \N coenu-
uaer 8 Gy, §,, ..., &) Bepumen x = (epsXp, oo X)), ¥ =y, 3, - - <3 V), TIpHYEM 3..% Yis
T0 Gy eM FOBOPHTE, 9TO pe6po # napamensno X;. Iycrs § — npoussoneHoe wcio u3 {1,2, .. ., :Y
Ecmn w3 rpada G(§;, &5, ..., £,) ynamare Bee pebpa, mapairensusie X;, 10 nwgﬂo&. gme.
HMeronmi §; KOMIOOHEHTOB. DTH KOMIIOBEHTEI MBI 6YIEM HA3bIBATH CIOSMHA B mmuvmw:wmmm ocH X3
TEpPMHUH K-bIif CIO# B HANpPaBJICHMH OCH X; Mbil 6yIeM ynoTpebnate mwis crnos, ooh.om%wwmn*o BEp-
muHy X = (x{, X3, .., X,), B KOTOpO# X; = k, x; =1 ona scex i € {1, 2, - .,"awtv%&ﬂ o

Juuettneiit daxrop L ‘pemmeryaToro rpada msel OyneM Ha3BIBATH n%Eoo.n,mm.m@E, JIHEHHBIM
dakTopom, ecim It Beex § € {1,2, ..., n} BEIMIONHSETCA: AN BCAKMX mw«x .o;Qmw\.E:x CIIOEB B Ha-
IIPaBIEHAN OCH X; CYUIECTBYET XOTA OBl ORHO Takoe pebpo u3 L, %oa.omg, nogsmxo.a mon:.usmw
M3 OJHOrO CIOSt C BEPUIMHON W3 BTOPOTO CIIOA.

¢
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Ilycts pebpo g coeaunser p PeieTyaToM rpade BepmuHe x, y, a pebpo ¢ — Bepumust x, 3,
Bynem roBopurs, uto pebpa g, & 6musku, ecmy Bemonnsercs: (1) {x, rio{x,y} =g; (2) B rpade
CYIUECTBYET HETHIPEXYTONBHHUK, COAEpH ALHi] pebpa’ g, g. Ocrasiunecs npa pebpa ykasaHzoro
HETHIPEXYTOJIBHAKA HA30BEM NONEepeYHUKaMu OITM3KMX" pebep g, g. Iycre £ — OPOM3BOJIEHBIIA
JnedMbii dakTop perteryatoro rpada, conepxammii asa ero 6nu3Kux pebpa g, & mmycrs L* —
noarpag TOro e peleTyaToro rpaga, KoTopsril nony4uTcs u3s L, ecnu p NOCNEAHEM 3aMEHHTE
pebpa g, g nx nonepetHukamMu; Toraa L* taxke SBisercs JuHeAHbIM dakTopom paccMaTpusaeMoro
rpada. Byaem Taxke TOBOPHTS, 4T0 L* monyyaercs »-fpecOpaszoBanuenm I, Ha pebpax g, g.

Hon Geckomeunnim #-MCPHBIM peIreTyaTsM rpadom (0603HaveHme Gln]) Mer 6ynem mommmMate
rpad, BepIIEHAME KOTOPOro ABIHOTCS. BCe TOUKH M3 E,, BCE KOODIMHATLD KOTOPBIX CYTh IIC/bIe
HCNA, NPHYEM NPOM3BOMNBHBIE 1BE BCPUIMHBI COCOMHEHB! pebpoM omsTh TOrja ¥ TONBKO TOrpa,
kOraa mx paccrossue pasHo 1. O yacTiunonm rpage Frpada Gin] 6ynem TOBOPUTb, YTO OH ABIACTCSH
A-rpadom B Gln} ecnu CIPABENMBO: IPON3BONLHAS BEPIIMHA U3 Gln] mrmnenTra no Gonsmel
Mepe ¢ omHuM pe6pom u3 F. ITycts & h — npownssonbHsie mea pebpa u3 Gn] u mycrb pebpo g
COCRUHSAET BESPLIMHEL ¥, W, & pe6po h — BEpIIMHELI X, v. Bynem _.owomﬁ.r. 4T0 pebpa g, b — cocenuue,
e g + huecmu {v, w} N {x,y} + 0; pebpa g, & — woutn cocentue, ecim g + h, g u h — gHe
coceume u ecnu B G[n] cywectsyer pebpo f raxoe, uro f, & — Cocennue, a Taxxe f, k — cocemmue
pebpa.

Bynem rosopurs, 9to A4 — rpa Frpaga Gn] moxsro PACKpacuTsh p UBETaMM (p -— HATypanbHOS
YHCII0), eCIIH BCAKOMY Pe6py M3 F MOXHO MOCTABUTE B COOTBETCTBHE 44CNO (= IBeT) 13 {,2,...,n}
TaK, 9T06bI NPOM3BOMBHEIE ABA MOYTH cocenuue pebpa GbUIM OKpailleHsr B Da3HbIi uBer.

B pa66Te moxasbiBaroTcs CICAYIOUE TEOPEMBI;

1. B pemeruarom rpage G(§,, Erinn, £,) ¢ YeTHBIM wHCHOM BEPUIMH CYIIECTBYET 1 ¥ TOJBKO
n TaKAX JMHHEHHEIX $akTopos, HuKaxme ZBA M3 KOTOPEIX HE UMEIOT 06mero pebpa.

2. Nycts L — npoussosubt Jumelinkit hakTop pereTsaToro rpada G(¢,, $3soi s &) Mus
“HCIIA 0,(7) peGep u3 L, coequusiomux HEKOTOPYIO BEPUIMHY H3 k-Oro cios ¢ HEKOTOPO# BepIIKHOHK
u3 (k + 1)-oro cnos B HanpaBNeHUA OCH X, BLIDONHACTCH:

kI & =g, ()) (mod 2)
=

3. B rpade G(,,&;) cymecrayer CYIECTBEHHbIH JIMHEeUHEN (akTop Torma n TONLKO TOFAA,
xorna (1) £:&, = 0 (mod 2); @& 250 &2 2 5; (4) He umeer MecTa § =& =6

4. B TpexmMepHOM pemeTyaToM rpage G(&,, €5, &3) cymecteyer CYLIECTBEHHBIN JTUHEHHET
dakTop Toraa m TONBKO TOLAQ, KOT/Ia OH MMEET YETHOE YHCIIO BEPIIUH M KOrja XoTA OB fBe H3
uucen &;,8&,, &5 Gonbine yem 2. '

5. Oycren> 3. B H-MCDHOM DEUIETYATOM Tpade CYINECTBYET CYUICCTBEHHbIA MHHEHHbI tdaxrop
TOria M TONBKO TOTAR, KOIAa OH HMEET YeTHOe YHCIIO BEPIMH.

6. IIpON3BONLHLI JMHEHHBLT bakTop mBYXMeEpHOrO peweTyaToro rpada G(¢,, &,) conepaur
XOTst 651 O/tHY ero mapy 6rmusxux pebep H IPOUIBONLHBIA THHEKHLIH taxTop Moxer 6prTh HEKOTOPBIM
KOHEYHLIM YUCIOM %-Ipeo6pa3oBaHuil TNEPEeBS/iCH B IPOM3IBOIBHELL APYTo# JHHeHHEI daxTop
TOro e rpada.

7. llycte p — npoussomsioe HaTypanbHOe yucno. Pemervartsrit rpap G, &,, ..., m@y
B KOTOpOM &; = 2 11a Beex i € {1,2, ..., 4p}, moxmno DPA3JIOXUTE HA 4p NunelHbIX dakTopos Tax,
ITO HUKAKO# M3 JIMHEHHBIX $aKTOPOB 3TOro PasJIokenus He ByaeT coaepiarn mapsl 6:m3kux pebep
(1. €. pebpa DPOU3BOMEHOrO YeTHIPEXYronbauka 3 G(£,, Easiva, m@v DPHHATIEKAT 9eThIpeM
OTJIMIHBIM APYT OT APYTa JIMHEHHBIM dakropam sroro pasnoxenus).

8. IpoussonsHbi A-rpad B rpade Gln] moxmo PACKPacuTh 21 uBeTAMM,
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9. Beaxuit umelinpiit akrop n-mepHoro pemeTyaToro rpadga Moxer ObiTh packpaiex 2n upe-

TaMH, .
10. Hycrp § — NpOM3BONMbHAA ABYXMEDHAA INAXMATHAA JOCKA M MycTb R — OPOU3BOJIEHOE

€€ pa3foOXeHUe Ha NPAMOYTOMBHHKM pasmepoB 1 x 2. IpAMOYroMbHMKM M3 R MOXHO Bcerna
€ HOMOLIBIO HETHIPEX BETOB PACKPACHTD TAK, YTOGKI BCAKME ABA MPAMOYTONIBHUKA, OBy IpaHHLY
KOTOpBIX 06pa3yeT OTPe30K JUmHOM = 1, GBUTH OKpAIICHH! B Pa3HBIA LBET. , -
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